论文标题
活动驱动的触觉学习与位置尖峰神经元
Event-Driven Tactile Learning with Location Spiking Neurons
论文作者
论文摘要
触觉对于各种日常任务至关重要。基于事件的触觉传感器和尖峰神经网络(SNN)的新进展刺激了事件驱动的触觉学习。但是,由于现有的尖峰神经元的代表性有限和数据中高时空的复杂性,其启用了SNN的事件驱动的触觉学习仍处于起步阶段。在本文中,为了提高现有尖峰神经元的代表性功能,我们提出了一种名为“位置尖峰神经元”的新型神经元模型,使我们能够以新颖的方式提取基于事件的数据的特征。此外,基于经典时间尖峰响应模型(TSRM),我们开发了一个特定位置尖峰神经元模型 - 位置尖峰响应模型(LSRM),该模型(LSRM)是SNNS的新构建块。此外,我们提出了一个混合模型,该模型将SNN与TSRM神经元和LSRM神经元结合在一起,以捕获数据中复杂的时空依赖性。广泛的实验证明了我们模型的显着改善,而不是其他关于事件驱动的触觉学习的作品的显着改善,并显示了我们模型和位置尖峰神经元的卓越能量效率,这可能会释放其在神经形态硬件上的潜力。
The sense of touch is essential for a variety of daily tasks. New advances in event-based tactile sensors and Spiking Neural Networks (SNNs) spur the research in event-driven tactile learning. However, SNN-enabled event-driven tactile learning is still in its infancy due to the limited representative abilities of existing spiking neurons and high spatio-temporal complexity in the data. In this paper, to improve the representative capabilities of existing spiking neurons, we propose a novel neuron model called "location spiking neuron", which enables us to extract features of event-based data in a novel way. Moreover, based on the classical Time Spike Response Model (TSRM), we develop a specific location spiking neuron model - Location Spike Response Model (LSRM) that serves as a new building block of SNNs. Furthermore, we propose a hybrid model which combines an SNN with TSRM neurons and an SNN with LSRM neurons to capture the complex spatio-temporal dependencies in the data. Extensive experiments demonstrate the significant improvements of our models over other works on event-driven tactile learning and show the superior energy efficiency of our models and location spiking neurons, which may unlock their potential on neuromorphic hardware.