论文标题
相对左邦加茨完成及其与突变的兼容性
Relative left Bongartz completions and their compatibility with mutations
论文作者
论文摘要
在本文中,我们在给定的基本$τ$ -Rigid Pair $(u,q)$的模块类别中介绍了相对的左邦加兹完成术,该$τ$ -Irgid Pair $(u,q)$ $ a $ a $。他们为基本$τ$ - 用$(u,q)$作为直接总结的基本$τ$。我们证明,相对左邦加茨的完成与突变具有很好的兼容性。使用这种兼容性,我们能够研究$τ$减少的最大绿色序列的存在。我们还解释了我们的构建以及淤积理论设置的一些结果。
In this paper, we introduce relative left Bongartz completions for a given basic $τ$-rigid pair $(U,Q)$ in the module category of a finite dimensional algebra $A$. They give a family of basic $τ$-tilting pairs containing $(U,Q)$ as a direct summand. We prove that relative left Bongartz completions have nice compatibility with mutations. Using this compatibility we are able to study the existence of maximal green sequences under $τ$-tilting reduction. We also explain our construction and some of the results in the setting of silting theory.