论文标题
使用随机细胞自动机在SEIR流行模型中两种疫苗剂量的影响
Effect of two vaccine doses in the SEIR epidemic model using a stochastic cellular automaton
论文作者
论文摘要
在这项工作中,为了支持免疫策略的决策,我们建议考虑到随机细胞自动机的SEIR模型中包含两种疫苗接种剂量。我们分析了三种不同的疫苗接种情况:$ i)无限剂量,(ii)将剂量有限为易感人,以及(iii)有限剂量随机分布的总体。我们的结果表明,开始疫苗接种的疫苗接种数量和时间比疫苗功效,第一剂和第二剂量之间的延迟以及疫苗接种组之间的延迟更相关。场景(i)表明,该解决方案可以提早收敛到无疾病的平衡,以使以第一剂疫苗接种的个体中的一部分。在场景(II)的情况下,有两种疫苗接种剂量分为少数应用,将被感染者的数量降低了,而不是许多应用。此外,第一次施用的剂量浪费很少,第二剂量的废物增加。该方案(iii)比方案$(ii)$更重要的是浪费剂量从第一个应用程序增加到第二个应用程序。在场景(III)中,浪费的总剂量随应用数量的数量线性增加。此外,连续组的应用中有效剂量的数量呈指数加班。
In this work, to support decision making of immunisation strategies, we propose the inclusion of two vaccination doses in the SEIR model considering a stochastic cellular automaton. We analyse three different scenarios of vaccination: $i) unlimited doses, (ii) limited doses into susceptible individuals, and (iii) limited doses randomly distributed overall individuals. Our results suggest that the number of vaccinations and time to start the vaccination is more relevant than the vaccine efficacy, delay between the first and second doses, and delay between vaccinated groups. The scenario (i) shows that the solution can converge early to a disease-free equilibrium for a fraction of individuals vaccinated with the first dose. In the scenario (ii), few two vaccination doses divided into a small number of applications reduce the number of infected people more than into many applications. In addition, there is a low waste of doses for the first application and an increase of the waste in the second dose. The scenario (iii) presents an increase in the waste of doses from the first to second applications more than the scenario $(ii)$. In the scenario (iii), the total of wasted doses increases linearly with the number of applications. Furthermore, the number of effective doses in the application of consecutive groups decays exponentially overtime.