论文标题
构建基于晶格的嵌入式晶格算法,用于具有复合数的多元函数近似值
Constructing Embedded Lattice-based Algorithms for Multivariate Function Approximation with a Composite Number of Points
论文作者
论文摘要
我们在加权的Korobov空间中使用$ n $函数值在晶格点上大约在加权的Korobov空间中的定期函数。我们不将$ n $限制为质量数字,因为在当前可用的文献中,但允许多个点,包括$ 2 $的权力,从而提供了嵌入式晶格序列的基本理论。我们的结果是建设性的,因为我们提供了一种组件算法,该算法为给定数量的点甚至一系列点构建合适的生成向量。它这样做无需构造将在其上表示功能的索引集。然后,可以使用产生的生成矢量来近似基础加权的Korobov空间中的功能。我们分析了$ l_2 $和$ l _ {\ infty} $ norms下的最坏情况下的近似错误。我们在$ L_2 $ NORM下进行的组件结构可实现基于晶格的算法的最佳收敛速率,并且该理论可以应用于基于晶格的核方法和键素。根据平滑度参数$α$的价值,我们建议在$ l _ {\ infty} $ norm中的构造中搜索标准的两个变体,从而扩展了以前仅适用于产品型重量参数和prime $ n $的结果。我们还提供了一个理论上的上限,显示嵌入式晶格序列与固定值$ n $的晶格规则本质上一样好。根据对权重参数的某些标准假设,最坏的案例错误绑定与$ d $无关。
We approximate $d$-variate periodic functions in weighted Korobov spaces with general weight parameters using $n$ function values at lattice points. We do not limit $n$ to be a prime number, as in currently available literature, but allow any number of points, including powers of $2$, thus providing the fundamental theory for construction of embedded lattice sequences. Our results are constructive in that we provide a component-by-component algorithm which constructs a suitable generating vector for a given number of points or even a range of numbers of points. It does so without needing to construct the index set on which the functions will be represented. The resulting generating vector can then be used to approximate functions in the underlying weighted Korobov space. We analyse the approximation error in the worst-case setting under both the $L_2$ and $L_{\infty}$ norms. Our component-by-component construction under the $L_2$ norm achieves the best possible rate of convergence for lattice-based algorithms, and the theory can be applied to lattice-based kernel methods and splines. Depending on the value of the smoothness parameter $α$, we propose two variants of the search criterion in the construction under the $L_{\infty}$ norm, extending previous results which hold only for product-type weight parameters and prime $n$. We also provide a theoretical upper bound showing that embedded lattice sequences are essentially as good as lattice rules with a fixed value of $n$. Under some standard assumptions on the weight parameters, the worst-case error bound is independent of $d$.