论文标题
有限地平线西奈台球的最大熵的度量
Measure of maximal entropy for finite horizon Sinai billiard flows
论文作者
论文摘要
使用Carrand在台球图上的平衡状态上的最新工作,并通过先前一篇Baladi和Demers文章中的“跨越”方法进行引导,我们构建了二维有限的二维式西奈(分散)(分散)验证(并表明它是bernoulli的台词)的独特最大熵的独特度量,该量子的范围更大,是bernoulli的台词。 0 <s_0 <1量化了奇异性的复发。在许多示例中,这种界限(预计将一般地保持)。
Using recent work of Carrand on equilibrium states for the billiard map, and bootstrapping via a "leapfrogging" method from a previous article of Baladi and Demers, we construct the unique measure of maximal entropy for two-dimensional finite horizon Sinai (dispersive) billiard flows (and show it is Bernoulli), assuming that the topological entropy of the flow is strictly larger than s_0 log 2 where 0<s_0<1 quantifies the recurrence to singularities. This bound holds in many examples (it is expected to hold generically).