论文标题
从雅各布的梯子跨越无功能衍生物
Ab initio Static Exchange-Correlation Kernel across Jacob's Ladder without functional derivatives
论文作者
论文摘要
电子交换相关(XC)内核构成了估计诸如介电特性,介电特性,导热率或对外部扰动的响应等材料特性的基本输入。在实践中,尚无可靠的方法来计算具有任意XC功能的真实材料的内核。在这项工作中,我们通过在密度功能理论(DFT)的框架内引入一种新的,正式的静态XC内核来克服这一长期限制,并且不使用功能衍生物 - 除了通常的XC功能不合时间外,没有外部输入。我们将新结果与精确的量子蒙特卡洛(QMC)数据进行比较,以在环境和温度密集的物质条件下绘制的原型统一电子气体模型进行比较。这为我们提供了对不同XC功能的性能的前所未有的见解,并且对在极端温度下为应用设计的新功能的开发具有重要意义。此外,我们为融合应用和天体物理物体中的XC XC核获得了新的DFT结果。观察到的与QMC参考数据的良好一致性表明,我们的框架能够捕获非平凡的效应,例如在大波数下氢的密度响应中XC诱导的各向同性破裂。
The electronic exchange-correlation (XC) kernel constitutes a fundamental input for the estimation of a gamut of material properties such as the dielectric characteristics, the thermal and electrical conductivity, or the response to an external perturbation. In practice, no reliable method has been known that allows to compute the kernel of real materials with arbitrary XC functionals. In this work, we overcome this long-standing limitation by introducing a new, formally exact methodology for the computation of the material specific static XC kernel exclusively within the framework of density functional theory (DFT) and without employing functional derivatives -- no external input apart from the usual XC-functional is required. We compare our new results with exact quantum Monte Carlo (QMC) data for the archetypical uniform electron gas model at both ambient and warm dense matter conditions. This gives us unprecedented insights into the performance of different XC-functionals, and has important implications for the development of new functionals that are designed for the application at extreme temperatures. In addition, we obtain new DFT results for the XC kernel of warm dense hydrogen as it occurs in fusion applications and astrophysical objects. The observed excellent agreement to the QMC reference data demonstrates that our framework is capable to capture nontrivial effects such as XC-induced isotropy breaking in the density response of hydrogen at large wave numbers.