论文标题

在振荡器晶格中旅行的嵌合体,并带有对流耦合

Traveling chimeras in oscillator lattices with advective-diffusive coupling

论文作者

Smirnov, L., Pikovsky, A.

论文摘要

我们考虑了通过辅助复合物磁场耦合的一维相振荡器。虽然在Kumamoto和Battogtokh进行的精确嵌合体研究中,仅考虑了该场的扩散,但我们包括使左右右不对称耦合的对流。嵌合体开始移动,我们证明了出现弱动荡的运动模式。它具有一个相对较大的同步域,其中相位几乎相等,并且在当地驾驶场很小的地方更无序的域。对于具有大量振荡器的密集系统,无序域中存在很强的局部相关性,在大多数地方,它看起来像是平滑的相位剖面。我们还发现具有不同复杂性的确切规则行驶波嵌合式溶液,但其中一些是稳定的。

We consider a one-dimensional array of phase oscillators coupled via an auxiliary complex field. While in the seminal chimera studies by Kumamoto and Battogtokh only diffusion of the field was considered, we include advection which makes the coupling left-right asymmetric. Chimera starts to move and we demonstrate, that a weakly turbulent moving pattern appears. It possesses a relatively large synchronous domain where the phases are nearly equal, and a more disordered domain where the local driving field is small. For a dense system with a large number of oscillators, there are strong local correlations in the disordered domain, which at most places looks like a smooth phase profile. We find also exact regular traveling wave chimera-like solutions of different complexity, but only some of them are stable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源