论文标题
概括了异构网络的入侵检测:一种堆叠的无措施联合学习方法
Generalizing intrusion detection for heterogeneous networks: A stacked-unsupervised federated learning approach
论文作者
论文摘要
不断发展的数字化转型对我们的社会构成了新的要求。与依赖网络领域的依赖以及通过设计实现安全性的困难有关的方面构成了挑战。结果,以数据为中心和机器学习方法成为确保大型网络的可行解决方案。尽管在网络安全域中,基于ML的解决方案在不同上下文之间概括的能力面临着一个挑战。换句话说,基于特定网络数据的解决方案通常在其他网络上无法令人满意。本文介绍了对基于流的网络入侵检测系统(NIDS)的跨核配置概括的堆叠式无需的联合学习(FL)方法。我们研究的提出的方法包括在整体学习任务中与能量流分类器结合使用的深度自动编码器。我们的方法比传统的本地学习和幼稚的交叉评估(在一种情况下进行培训并在另一个网络数据上进行测试)更好。值得注意的是,在非IID数据孤岛的情况下,提出的方法证明了声音性能。结合了无监督学习的集合体系结构中的信息功能,我们建议拟议的基于FL的NIDS为异构网络之间的概括提供了可行的概括方法。据我们所知,我们的建议是将无监督的FL应用于使用基于流量的数据的网络入侵检测泛化问题的首款成功方法。
The constantly evolving digital transformation imposes new requirements on our society. Aspects relating to reliance on the networking domain and the difficulty of achieving security by design pose a challenge today. As a result, data-centric and machine-learning approaches arose as feasible solutions for securing large networks. Although, in the network security domain, ML-based solutions face a challenge regarding the capability to generalize between different contexts. In other words, solutions based on specific network data usually do not perform satisfactorily on other networks. This paper describes the stacked-unsupervised federated learning (FL) approach to generalize on a cross-silo configuration for a flow-based network intrusion detection system (NIDS). The proposed approach we have examined comprises a deep autoencoder in conjunction with an energy flow classifier in an ensemble learning task. Our approach performs better than traditional local learning and naive cross-evaluation (training in one context and testing on another network data). Remarkably, the proposed approach demonstrates a sound performance in the case of non-iid data silos. In conjunction with an informative feature in an ensemble architecture for unsupervised learning, we advise that the proposed FL-based NIDS results in a feasible approach for generalization between heterogeneous networks. To the best of our knowledge, our proposal is the first successful approach to applying unsupervised FL on the problem of network intrusion detection generalization using flow-based data.