论文标题

插值$ \ MATHCAL {L} _2 $ - 最佳降低订购建模的统一框架

A Unifying Framework for Interpolatory $\mathcal{L}_2$-optimal Reduced-order Modeling

论文作者

Mlinarić, Petar, Gugercin, Serkan

论文摘要

我们为插值$ \ MATHCAL {L} _2 $ - 最佳的减少订单建模开发了一个统一的框架,从固定模型到参数动力学系统,针对各种各样的问题。我们首先表明该框架自然涵盖了$ \ Mathcal {h} _2 $ -Optimal模型订单减少的必要条件,并导致$ \ MATHCAL {H} _2 _2 _2 \ outimime \ otimes \ Mathcal {l} _2 $ -Optimal Models Models Multii Intuction/Multii caramuttim/yuntuctim rectuction/yuntim rectuction/yumbion caramition/yumert caramution/yumert rectuction/yuntuction/乘,此外,我们为合理离散最小二乘最小化的新型插值最佳条件以及$ \ Mathcal {l} _2 $ - 最佳模型订单降低一类参数固定模型的降低。我们表明,位于跨不同领域的最佳性的主要工具是Bitisgential Hermite插值。在两个数值示例中说明了理论结果。

We develop a unifying framework for interpolatory $\mathcal{L}_2$-optimal reduced-order modeling for a wide classes of problems ranging from stationary models to parametric dynamical systems. We first show that the framework naturally covers the well-known interpolatory necessary conditions for $\mathcal{H}_2$-optimal model order reduction and leads to the interpolatory conditions for $\mathcal{H}_2 \otimes \mathcal{L}_2$-optimal model order reduction of multi-input/multi-output parametric dynamical systems. Moreover, we derive novel interpolatory optimality conditions for rational discrete least-squares minimization and for $\mathcal{L}_2$-optimal model order reduction of a class of parametric stationary models. We show that bitangential Hermite interpolation appears as the main tool for optimality across different domains. The theoretical results are illustrated on two numerical examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源