论文标题
从颜色对称性的重力
Towards Gravity From a Color Symmetry
论文作者
论文摘要
使用颜色界面二元性的工具,我们提出了基于关于天体球体的2D KAC-MOODY理论的引力振幅的全息构造。在$ n \ to \ infty $限制量规组对应于$ w_ {1+ \ infty} $,这是因为$ u(n)$生成器享受了简单的量子组结构,而twistor纤维又从天体球体上继承。 我们展示了这张图片中如何出现四维动量空间,该图片直接连接到Tree级S-Matrix的所谓运动代数。另一方面,该框架可以嵌入天体CFT中,以与先前在软膨胀中观察到的全息对称代数接触。 kac-moody电流在这种扩展中扮演着所有订单的重力,也导致$ w_ {1+ \ infty} $的戈德石模式的自然概念。主要示例是BCFW类型的递归关系和全态三点振幅。
Using tools from color-kinematics duality we propose a holographic construction of gravitational amplitudes, based on a 2d Kac-Moody theory on the celestial sphere. In the $N\to \infty$ limit the gauge group corresponds to $w_{1+\infty}$, due to the $U(N)$ generators enjoying a simple quantum group structure, which is in turn inherited from a twistor fiber over the celestial sphere. We show how four-dimensional momentum-space is emergent in this picture, which connects directly to the so-called kinematic algebra of the tree-level S-Matrix. On the other hand, the framework can be embedded within a celestial CFT to make contact with holographic symmetry algebras previously observed in the soft expansion. Kac-Moody currents play the role of a graviton to all orders in such expansion, and also lead to a natural notion of Goldstone modes for $w_{1+\infty}$. Focusing on MHV amplitudes, main examples are a BCFW type recursion relation and holomorphic three-point amplitudes.