论文标题
与扭转的统计和半脉冲歧管上的共形准主体转换
Conformal-projective transformations on statistical and semi-Weyl manifolds with torsion
论文作者
论文摘要
我们表明,在共形指定性转换下,具有扭转的统计和半透明结构是不变的。我们证明,与扭转的半左(分别为统计)歧管的非分化亚体也是扭转(分别分别是统计)歧管(分别为统计)歧管,并且两个条件性准确性同等的半脉冲(分别是统计,统计,统计,统计)在不适合培养的情况下,是对甲壳的相结合的,均不均匀的结构。等效。另外,我们证明,在半脉冲歧管中,具有扭转的非排位式超表面的脐带点可以通过共形指定性变化来保留。然后,我们考虑具有扭转的半叶歧管的轻度突出表面,并描述了相似性和差异相对于非分类性超浮标。最后,我们表明,具有扭转的半脉冲歧管可以通过非分类仿射分布来实现。
We show that statistical and semi-Weyl structures with torsion are invariant under conformal-projective transformations. We prove that a non-degenerate submanifold of a semi-Weyl (respectively, statistical) manifold with torsion is also a semi-Weyl (respectively, statistical) manifold with torsion, and that the induced structures of two conformal-projective equivalent semi-Weyl (respectively, statistical) structures with torsion on a manifold to a non-degenerate submanifold, are conformal-projective equivalent, too. Also, we prove that the umbilical points of a non-degenerate hypersurface in a semi-Weyl manifold with torsion are preserved by conformal-projective changes. Then we consider lightlike hypersurfaces of semi-Weyl manifolds with torsion and we describe similarities and differences with respect to the non-degenerate hypersurfaces. Finally, we show that a semi-Weyl manifold with torsion can be realized by a non-degenerate affine distribution.