论文标题
一个(CO)代数框架用于有序流程
A (Co)Algebraic Framework for Ordered Processes
论文作者
论文摘要
最近发表的论文(Schmid,Rozowski,Silva和Rot,2022年)提供了一个(CO)代数框架,用于研究使用代数分支结构和递归操作员研究过程。该框架捕捉了米尔纳的常规行为代数(Milner,1984),但未能诚实地说明与概率过程密切相关的计算(Stark and Smolka,1999)。我们通过提供一个替代框架来捕获Stark和Smolka的微积分,旨在研究一个有序的过程计算的家族,并具有不等的分支结构和递归操作员。我们观察到,最近通过测试(Rozowski,Kozen,Kappe,Schmid,Silva,2022)对受保护的Kleene代数的概率扩展是我们一个骨化的片段,以及其他例子。我们还将过程计算中的固有顺序与山地相似性的概念进行了比较。
A recently published paper (Schmid, Rozowski, Silva, and Rot, 2022) offers a (co)algebraic framework for studying processes with algebraic branching structures and recursion operators. The framework captures Milner's algebra of regular behaviours (Milner, 1984) but fails to give an honest account of a closely related calculus of probabilistic processes (Stark and Smolka, 1999). We capture Stark and Smolka's calculus by giving an alternative framework, aimed at studying a family of ordered process calculi with inequationally specified branching structures and recursion operators. We observe that a recent probabilistic extension of guarded Kleene algebra with tests (Rozowski, Kozen, Kappe, Schmid, Silva, 2022) is a fragment of one of our calculi, along with other examples. We also compare the intrinsic order in our process calculi with the notion of similarity in coalgebra.