论文标题

一个(CO)代数框架用于有序流程

A (Co)Algebraic Framework for Ordered Processes

论文作者

Schmid, Todd

论文摘要

最近发表的论文(Schmid,Rozowski,Silva和Rot,2022年)提供了一个(CO)代数框架,用于研究使用代数分支结构和递归操作员研究过程。该框架捕捉了米尔纳的常规行为代数(Milner,1984),但未能诚实地说明与概率过程密切相关的计算(Stark and Smolka,1999)。我们通过提供一个替代框架来捕获Stark和Smolka的微积分,旨在研究一个有序的过程计算的家族,并具有不等的分支结构和递归操作员。我们观察到,最近通过测试(Rozowski,Kozen,Kappe,Schmid,Silva,2022)对受保护的Kleene代数的概率扩展是我们一个骨化的片段,以及其他例子。我们还将过程计算中的固有顺序与山地相似性的概念进行了比较。

A recently published paper (Schmid, Rozowski, Silva, and Rot, 2022) offers a (co)algebraic framework for studying processes with algebraic branching structures and recursion operators. The framework captures Milner's algebra of regular behaviours (Milner, 1984) but fails to give an honest account of a closely related calculus of probabilistic processes (Stark and Smolka, 1999). We capture Stark and Smolka's calculus by giving an alternative framework, aimed at studying a family of ordered process calculi with inequationally specified branching structures and recursion operators. We observe that a recent probabilistic extension of guarded Kleene algebra with tests (Rozowski, Kozen, Kappe, Schmid, Silva, 2022) is a fragment of one of our calculi, along with other examples. We also compare the intrinsic order in our process calculi with the notion of similarity in coalgebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源