论文标题

MA-RECON:可靠的稳健快速MRI K-Space插值的面膜意识到的深神经网络

MA-RECON: Mask-aware deep-neural-network for robust fast MRI k-space interpolation

论文作者

Avidan, Nitzan, Freiman, Moti

论文摘要

在傅立叶域中,从采样不足的“ K空间”数据中对MRI图像的高质量重建对于缩短MRI获取时间和确保出色的时间分辨率至关重要。近年来,已经出现了大量深层神经网络(DNN)方法,旨在解决与此过程有关的复杂,不良的反问题。但是,它们反对采集过程中的变化和解剖分布的不稳定性在这些DNN体系结构中相关物理模型的概括方面缺乏。我们工作的目的是通过引入“ Ma-Recon”(一种创新的面具吸引的DNN体系结构和相关培训方法)来增强DNN方法进行K空间插值的概括能力。与上述方法不同,我们的“ MA-RECON”体系结构不仅编码观察到的数据,还要编码模型结构中的不足采样掩码。它实现了一种量身定制的训练方法,该方法利用了用多种不足采样面罩生成的数据,以刺激模型对未采样的MRI重建问题的概括。因此,有效地表示相关的反问题,类似于经典的压缩传感方法。通过与广泛访问的FastMRI数据集进行严格测试,确认了我们的MA-RECON方法的好处。与经过减小掩盖掩模的训练的标准DNN方法和DNN相比,我们的方法表现出了出色的概括能力。这导致了鲁棒性的稳健性有了显着改善,以抵抗采集过程和解剖学分布的变化,尤其是在病理学区域。总之,我们的面具感知策略有望增强基于DNN的方法的概括能力和鲁棒性,从而通过采样不足K-Space数据进行MRI重建。

High-quality reconstruction of MRI images from under-sampled `k-space' data, which is in the Fourier domain, is crucial for shortening MRI acquisition times and ensuring superior temporal resolution. Over recent years, a wealth of deep neural network (DNN) methods have emerged, aiming to tackle the complex, ill-posed inverse problem linked to this process. However, their instability against variations in the acquisition process and anatomical distribution exposes a deficiency in the generalization of relevant physical models within these DNN architectures. The goal of our work is to enhance the generalization capabilities of DNN methods for k-space interpolation by introducing `MA-RECON', an innovative mask-aware DNN architecture and associated training method. Unlike preceding approaches, our `MA-RECON' architecture encodes not only the observed data but also the under-sampling mask within the model structure. It implements a tailored training approach that leverages data generated with a variety of under-sampling masks to stimulate the model's generalization of the under-sampled MRI reconstruction problem. Therefore, effectively represents the associated inverse problem, akin to the classical compressed sensing approach. The benefits of our MA-RECON approach were affirmed through rigorous testing with the widely accessible fastMRI dataset. Compared to standard DNN methods and DNNs trained with under-sampling mask augmentation, our approach demonstrated superior generalization capabilities. This resulted in a considerable improvement in robustness against variations in both the acquisition process and anatomical distribution, especially in regions with pathology. In conclusion, our mask-aware strategy holds promise for enhancing the generalization capacity and robustness of DNN-based methodologies for MRI reconstruction from undersampled k-space data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源