论文标题

产生连贯的鼓伴随填充和即兴演奏

Generating Coherent Drum Accompaniment With Fills And Improvisations

论文作者

Dahale, Rishabh, Talwadker, Vaibhav, Rao, Preeti, Verma, Prateek

论文摘要

创造像音乐这样的复杂艺术作品需要深刻的创造力。随着深度学习和强大模型(例如变形金刚)的最新进展,自动音乐生成取得了巨大进展。在伴奏的生成环境中,在歌曲中适当的位置创建一个连贯的鼓模式,即使对于经验丰富的鼓手来说,在歌曲中的适当位置也是一项艰巨的任务。鼓节拍倾向于通过填充或即兴表演的节遵循重复的模式。在这项工作中,我们解决了鼓模式产生的任务,该任务是根据四种旋律乐器演奏的音乐来解决的:钢琴,吉他,贝斯和弦乐。我们将变压器序列用于序列模型来生成在旋律伴奏下进行的基本鼓模式,以发现即兴创作在很大程度上不存在,这可能归因于其在训练数据中的预期相对较低的表示。我们提出了一种新颖的功能,以捕获相对于其邻居的标准中即兴创作的程度。我们训练一个模型,以预测旋律伴奏曲目的即兴位置。最后,我们使用一种新颖的伯特(Bert)启发的填充体系结构来学习鼓和旋律的结构,以实现即兴音乐的填充元素。

Creating a complex work of art like music necessitates profound creativity. With recent advancements in deep learning and powerful models such as transformers, there has been huge progress in automatic music generation. In an accompaniment generation context, creating a coherent drum pattern with apposite fills and improvisations at proper locations in a song is a challenging task even for an experienced drummer. Drum beats tend to follow a repetitive pattern through stanzas with fills or improvisation at section boundaries. In this work, we tackle the task of drum pattern generation conditioned on the accompanying music played by four melodic instruments: Piano, Guitar, Bass, and Strings. We use the transformer sequence to sequence model to generate a basic drum pattern conditioned on the melodic accompaniment to find that improvisation is largely absent, attributed possibly to its expectedly relatively low representation in the training data. We propose a novelty function to capture the extent of improvisation in a bar relative to its neighbors. We train a model to predict improvisation locations from the melodic accompaniment tracks. Finally, we use a novel BERT-inspired in-filling architecture, to learn the structure of both the drums and melody to in-fill elements of improvised music.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源