论文标题

通过logits校准,通过标签分布偏斜的联合学习

Federated Learning with Label Distribution Skew via Logits Calibration

论文作者

Zhang, Jie, Li, Zhiqi, Li, Bo, Xu, Jianghe, Wu, Shuang, Ding, Shouhong, Wu, Chao

论文摘要

传统的联邦优化方法在异质数据(即降低准确性)中的性能较差,尤其是对于高度偏斜的数据。在本文中,我们调查了佛罗里达州的标签分布偏斜,在那里标签的分布各不相同。首先,我们从统计观点研究了标签分布偏差。我们在理论上和经验上都证明了基于软马克斯跨凝结的先前方法不合适,这可能会导致本地模型非常适合少数群体和缺失的类。此外,我们从理论上引入了一个偏离,以测量本地更新后梯度的偏差。最后,我们建议通过\ textbf {l} ogits \ textbf {C {c}启动)FedLc(\ textbf {fed {fed}学习,该学习根据每个班级出现的概率在SoftMax交叉透镜之前校准了逻辑。 FedLC通过添加成对标签的边距将细粒度校准的跨透镜损失应用于本地更新。联合数据集和现实世界数据集的广泛实验表明,联邦快递会导致更准确的全球模型和大大改善的性能。此外,将其他FL方法集成到我们的方法中可以进一步提高全球模型的性能。

Traditional federated optimization methods perform poorly with heterogeneous data (ie, accuracy reduction), especially for highly skewed data. In this paper, we investigate the label distribution skew in FL, where the distribution of labels varies across clients. First, we investigate the label distribution skew from a statistical view. We demonstrate both theoretically and empirically that previous methods based on softmax cross-entropy are not suitable, which can result in local models heavily overfitting to minority classes and missing classes. Additionally, we theoretically introduce a deviation bound to measure the deviation of the gradient after local update. At last, we propose FedLC (\textbf {Fed} erated learning via\textbf {L} ogits\textbf {C} alibration), which calibrates the logits before softmax cross-entropy according to the probability of occurrence of each class. FedLC applies a fine-grained calibrated cross-entropy loss to local update by adding a pairwise label margin. Extensive experiments on federated datasets and real-world datasets demonstrate that FedLC leads to a more accurate global model and much improved performance. Furthermore, integrating other FL methods into our approach can further enhance the performance of the global model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源