论文标题

基于二进制时间序列数据

Expectation-Maximizing Network Reconstruction and MostApplicable Network Types Based on Binary Time Series Data

论文作者

Liu, Kaiwei, Lv, Xing, Gao, Fei, Zhang, Jiang

论文摘要

基于社会感染动态的二进制时间序列数据,我们提出了一个通用框架,通过结合统计推断中的最大似然估计并引入期望最大化,以两体和三体相互作用来重建具有两体和三体相互作用的2个复合体。为了提高代码运行效率,整个算法采用矢量化表达式。通过推断最大似然估计,可以获得边缘存在概率的矢量化表达,并且通过概率矩阵,可以估算网络的邻接矩阵。我们采用两步方案来提高网络重建的有效性,同时大大减少计算量。该框架已在不同类型的复杂网络上进行了测试。其中,四种网络可以获得高重建有效性。此外,我们研究了噪声数据或随机干扰的影响,并证明了框架的鲁棒性,然后测试了两种超参数对实验结果的影响。最后,我们分析哪种类型的网络更适合该框架,并提出了提高实验结果有效性的方法。

Based on the binary time series data of social infection dynamics, we propose a general framework to reconstruct 2-simplex complexes with two-body and three-body interactions by combining the maximum likelihood estimation in statistical inference and introducing the expectation maximization. In order to improve the code running efficiency, the whole algorithm adopts vectorization expression. Through the inference of maximum likelihood estimation, the vectorization expression of the edge existence probability can be obtained, and through the probability matrix, the adjacency matrix of the network can be estimated. We apply a two-step scheme to improve the effectiveness of network reconstruction while reducing the amount of computation significantly. The framework has been tested on different types of complex networks. Among them, four kinds of networks can obtain high reconstruction effectiveness. Besides, we study the influence of noise data or random interference and prove the robustness of the framework, then the effects of two kinds of hyper-parameters on the experimental results are tested. Finally, we analyze which type of network is more suitable for this framework, and propose methods to improve the effectiveness of the experimental results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源