论文标题
游戏算法的注释
A Note on the Games-Chan Algorithm
论文作者
论文摘要
Games-chan算法发现,周期性二进制序列$ 2^n $,以$ n $迭代为单位。我们将其推广到使用生成函数和多项式的定期$ q $ -ary序列(其中$ q $是主要功率),并将其应用于$ q $ - y-ar polyenmial $ f $ in $ \ log _ {\,q}°(f)$ tererations $ itererations $ x $ polyenmial $ f $ in a $ q $ - y-ar polyenmial $ f $ in of $ x-1 $的多样性。
The Games-Chan algorithm finds the minimal period of a periodic binary sequence of period $2^n$, in $n$ iterations. We generalise this to periodic $q$-ary sequences (where $q$ is a prime power) using generating functions and polynomials and apply this to find the multiplicity of $x-1$ in a $q$-ary polynomial $f$ in $\log_{\,q}°(f)$ iterations.