论文标题

构建晶格玻尔兹曼方法的松弛系统

Constructing relaxation systems for lattice Boltzmann methods

论文作者

Simonis, Stephan, Frank, Martin, Krause, Mathias J.

论文摘要

我们介绍了第一个用于构建d维的晶格玻尔兹曼方法(LBM)的自上而下的ANSATZ。特别是,我们为给定标量,线性,D维对流扩散方程构建了一个松弛系统(RS)。随后,RS与零件和第一个能量壳上的D维离散速度Boltzmann模型(DVBM)相关。进行平衡,力矩空间和碰撞算子的代数表征。此外,RS的封闭方程式表达了添加的弛豫项,因为预保守数量的预先成分的高阶衍生物。在这里,将广义(2D+1)x(2d+1)rs链接到DDQ(2D+1)DVBM,该DVBM在完全离散后产生了一个LBM,其空间和时间上具有二阶精度。证明了最终LBM的DVBM的任意比例,DVBM的任意缩放结果的严格合并结果。自上而下的构造LBM在多个GPU上进行了数值测试,其中几个网格归一化的非二维数字在d = 3尺寸中具有光滑且非平滑的初始数据。

We present the first top-down ansatz for constructing lattice Boltzmann methods (LBM) in d dimensions. In particular, we construct a relaxation system (RS) for a given scalar, linear, d-dimensional advection-diffusion equation. Subsequently, the RS is linked to a d-dimensional discrete velocity Boltzmann model (DVBM) on the zeroth and first energy shell. Algebraic characterizations of the equilibrium, the moment space, and the collision operator are carried out. Further, a closed equation form of the RS expresses the added relaxation terms as prefactored higher order derivatives of the conserved quantity. Here, a generalized (2d+1)x(2d+1) RS is linked to a DdQ(2d+1) DVBM which, upon complete discretization, yields an LBM with second order accuracy in space and time. A rigorous convergence result for arbitrary scaling of the RS, the DVBM and conclusively also for the final LBM is proven. The top-down constructed LBM is numerically tested on multiple GPUs with smooth and non-smooth initial data in d=3 dimensions for several grid-normalized non-dimensional numbers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源