论文标题

基于自我监督的学习

Domain Shift-oriented Machine Anomalous Sound Detection Model Based on Self-Supervised Learning

论文作者

Yan, Jing-ke, Wang, Xin, Wang, Qin, Qin, Qin, Li, Huang-he, Ye, Peng-fei, He, Yue-ping, Zeng, Jing

论文摘要

得益于深度学习的发展,基于自我监督学习的机器异常检测的研究取得了非凡的成就。但是,测试集的声学特性和在同一机器的不同操作条件下的训练集(域移动)存在差异。对于现有检测方法而言,在低计算开销的情况下稳定地学习域移动功能是一项挑战。为了解决这些问题,我们在本文中提出了一个基于自我监管的学习(Tranself-Dygcn)的面向域的机器异常声音检测模型。首先,我们设计了一个时频域特征建模网络,以捕获全局和局部空间和时域特征,从而提高机器异常声音检测稳定性在域移动下的稳定性。然后,我们采用动态图卷积网络(DYGCN)来对域移动特征之间的相互依存关系进行建模,从而使模型能够有效地感知域移动特征。最后,我们使用域自适应网络(DAN)来弥补由域移动引起的性能降低,从而使模型在自我监督的环境中更好地适应异常的声音。建议模型的性能在DCASE 2020任务2和Dcase 2022任务2上进行了验证。

Thanks to the development of deep learning, research on machine anomalous sound detection based on self-supervised learning has made remarkable achievements. However, there are differences in the acoustic characteristics of the test set and the training set under different operating conditions of the same machine (domain shifts). It is challenging for the existing detection methods to learn the domain shifts features stably with low computation overhead. To address these problems, we propose a domain shift-oriented machine anomalous sound detection model based on self-supervised learning (TranSelf-DyGCN) in this paper. Firstly, we design a time-frequency domain feature modeling network to capture global and local spatial and time-domain features, thus improving the stability of machine anomalous sound detection stability under domain shifts. Then, we adopt a Dynamic Graph Convolutional Network (DyGCN) to model the inter-dependence relationship between domain shifts features, enabling the model to perceive domain shifts features efficiently. Finally, we use a Domain Adaptive Network (DAN) to compensate for the performance decrease caused by domain shifts, making the model adapt to anomalous sound better in the self-supervised environment. The performance of the suggested model is validated on DCASE 2020 task 2 and DCASE 2022 task 2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源