论文标题
与多类跨森林的正则磁性laplacian的稀疏
Sparsification of the regularized magnetic Laplacian with multi-type spanning forests
论文作者
论文摘要
在本文中,我们考虑了一个$ {\ rm u}(1)$ - 连接图,也就是说,每个方向的边缘都赋予了一个单位模量复杂的数字,该数字在方向上被缀合。当时,组合拉普拉斯的自然替代品是磁拉曲板,这是一种遗传学基质,其中包含有关图形连接的信息。磁性拉普拉斯人出现,例如,在角度同步问题中。在大而密集的图的背景下,我们在这里研究了磁性拉普拉斯$δ$的稀疏器,即基于边缘很少的子图的光谱近似值。我们的方法依赖于使用自定义确定点过程进行多型跨越森林(MTSF)的取样,这是偏爱多样性的边缘的概率分布。总而言之,MTSF是一个跨越子图,其连接的组件是树或周期根的树。后者部分捕获了连接图的角不一致,因此提供了一种压缩连接中包含的信息的方法。有趣的是,当连接图具有弱不一致的周期时,可以使用带有循环弹出的随机步行来获得所考虑的确定点过程的样品。我们为选择Laplacian的自然估计量提供了统计保证,并研究了我们的Sparsifiers的两个实际应用:与角度同步和基于图的半手法学习进行排名。从统计的角度来看,本文引起的本文的侧面结果是矩阵Chernoff与内在维度结合的矩阵Chernoff,它允许考虑正则化的影响 - $Δ+ q \ q \ mathbb {i} $的形式,$ q> 0 $ - $ q> 0 $ - 在稀疏保证方面。
In this paper, we consider a ${\rm U}(1)$-connection graph, that is, a graph where each oriented edge is endowed with a unit modulus complex number that is conjugated under orientation flip. A natural replacement for the combinatorial Laplacian is then the magnetic Laplacian, an Hermitian matrix that includes information about the graph's connection. Magnetic Laplacians appear, e.g., in the problem of angular synchronization. In the context of large and dense graphs, we study here sparsifiers of the magnetic Laplacian $Δ$, i.e., spectral approximations based on subgraphs with few edges. Our approach relies on sampling multi-type spanning forests (MTSFs) using a custom determinantal point process, a probability distribution over edges that favours diversity. In a word, an MTSF is a spanning subgraph whose connected components are either trees or cycle-rooted trees. The latter partially capture the angular inconsistencies of the connection graph, and thus provide a way to compress the information contained in the connection. Interestingly, when the connection graph has weakly inconsistent cycles, samples from the determinantal point process under consideration can be obtained à la Wilson, using a random walk with cycle popping. We provide statistical guarantees for a choice of natural estimators of the connection Laplacian, and investigate two practical applications of our sparsifiers: ranking with angular synchronization and graph-based semi-supervised learning. From a statistical perspective, a side result of this paper of independent interest is a matrix Chernoff bound with intrinsic dimension, which allows considering the influence of a regularization -- of the form $Δ+ q \mathbb{I}$ with $q>0$ -- on sparsification guarantees.