论文标题
一种机器学习方法,以预测多波段星系调查中缺少通量密度
A Machine Learning Approach to Predict Missing Flux Densities in Multi-band Galaxy Surveys
论文作者
论文摘要
我们提出了一种基于信息理论的新方法,以找到以所需的精度测量星系物理特性所需的最佳频带数量。作为概念的证明,使用最近更新的COSMOS目录(COSMOS2020),我们确定了最相关的波段,以测量夏威夷两人2-0(H20)中星系的物理特性,以及类似UVISTA的调查,用于$ i <25 $ ab的ab杂志的样本。我们发现,有了可用的$ i $ band通量,$ r $,$ u $,irac/$ ch2 $和$ z $ bands提供有关红移的大多数信息,其重要性从$ r $ band降低到$ z $ band。我们还发现,对于同一样本,IRAC/$ CH2 $,$ y $,$ r $和$ u $ $ bands是最相关的质量质量测量乐队,重要性降低了。在研究频段之间的相互关系时,我们训练一个模型,以预测H20样观测值近IR的UVISTA观察结果。我们发现,可以模拟/预测$ yjh $ band的幅度,其准确度为$1σ$ mag scatter $ \ lyssim 0.2 $ 0.2 $比附近的24 ab mag更明亮。应该注意的是,这些结论取决于样本的选择标准。对于任何具有不同选择的星系样本,应重新测量这些结果。我们的结果表明,在存在有限数量的频段的情况下,该模型在观察到的星系中训练的机器学习模型具有广泛的光谱覆盖率优于模板拟合。这样的机器学习模型最大程度地包括在可用的广泛调查中获得的信息,并在模板拟合的参数空间中不可避免地在存在几个频段的情况下进行了脱落。
We present a new method based on information theory to find the optimal number of bands required to measure the physical properties of galaxies with a desired accuracy. As a proof of concept, using the recently updated COSMOS catalog (COSMOS2020), we identify the most relevant wavebands for measuring the physical properties of galaxies in a Hawaii Two-0 (H20)- and UVISTA-like survey for a sample of $i<25$ AB mag galaxies. We find that with available $i$-band fluxes, $r$, $u$, IRAC/$ch2$ and $z$ bands provide most of the information regarding the redshift with importance decreasing from $r$-band to $z$-band. We also find that for the same sample, IRAC/$ch2$, $Y$, $r$ and $u$ bands are the most relevant bands in stellar mass measurements with decreasing order of importance. Investigating the inter-correlation between the bands, we train a model to predict UVISTA observations in near-IR from H20-like observations. We find that magnitudes in $YJH$ bands can be simulated/predicted with an accuracy of $1σ$ mag scatter $\lesssim 0.2$ for galaxies brighter than 24 AB mag in near-IR bands. One should note that these conclusions depend on the selection criteria of the sample. For any new sample of galaxies with a different selection, these results should be remeasured. Our results suggest that in the presence of a limited number of bands, a machine learning model trained over the population of observed galaxies with extensive spectral coverage outperforms template-fitting. Such a machine learning model maximally comprises the information acquired over available extensive surveys and breaks degeneracies in the parameter space of template-fitting inevitable in the presence of a few bands.