论文标题
在深地下中微子实验中{^{40}} ar上的电流相互作用中的电亲电流相互作用
Pion Production In ν μ Charged Current Interactions On {^{40}}ar In Deep Underground Neutrino Experiment
论文作者
论文摘要
了解PION的产生和最终状态相互作用(FSI)的后果对于所有中微子实验中的数据处理至关重要。在现代中微子研究中使用的共振(RES)生成过程中使用的能量极大地贡献了裂变的产生。如果生产后核物质在核物质中被吸收,则该事件可能无法通过绝对(QE)散射过程而无法识别并充当背景。对于振荡实验,估计此背景至关重要,并且需要在初级顶点和FSI之后的两个生成脉冲产生的固体理论模型。在FSI之后产生的PION数量与由于FSI引起的主要顶点产生的数量有很大不同。由于中微子探测器只能检测到最终晶体颗粒,因此FSI掩盖了有关主顶点上产生的颗粒的正确信息。需要对FSI进行详细的研究来克服此问题,该问题的理论模型纳入了Monte Carlo(MC)中微子事件发生器可以提供的。他们应该给出有关各种研究中微子相互作用的理论结果,并在理论模型和实验数据之间起到联系。在本文中,我们为在深地下中微子实验(Dune)设置的40 AR靶标上的νμ电流电流(CC)相互作用提供了模拟事件,用于两个不同的MC发生器:Genie和Nuwro。与Genie(V-3.00.06)相比,NUWRO(V-1902.2)对电荷交换和吸收过程的不透明(响应率较低)。与核内运输过程中产生的相比,乳粉更有可能被吸收。
Understanding the pion generation and the consequences of final-state interactions (FSI) are critical for the data processing in all neutrino experiments. The energy utilized in modern neutrino research of the resonance (RES) generation processes contributes significantly to the pion production. If a pion is absorbed in the nuclear matter after its production, the event may become unrecognizable from a quasielastic (QE) scattering process and act as a background. For oscillation experiments, estimating this background is critical, and it necessitates solid theoretical models for both pion generation at the primary vertex and after FSI. The number of pions created after FSI differs greatly from the number produced at the primary vertex due to FSI. Because neutrino detectors can only detect final-state particles, FSI obscures the proper information about particles created at the primary vertex. A detailed study of FSI is required to overcome this problem, which theoretical models incorporated in Monte Carlo (MC) neutrino event generators can provide. They should give theoretical results concerning the neutrino interactions for various researches, acting as a connection among both theoretical models and experimental data. In this paper, we provide simulated events for the pion creation in ν μ charge current (CC) interactions on a 40 Ar target in the Deep Underground Neutrino Experiment (DUNE) setup for two distinct MC generators: GENIE and NuWro. In comparison to GENIE (v-3.00.06), NuWro (v-19.02.2) is more opaque (less responsive) to the charge exchange and absorption processes; pions are more likely to be absorbed than produced during the intranuclear transport.