论文标题
重新审视四维谎言代数
Four-Dimensional Lie Algebras Revisited
论文作者
论文摘要
四维矢量空间上的谎言代数结构的投射变化具有四个不可还原的尺寸组成部分。我们在24个变量中计算了它们在多项式环中的主要理想。通过列出他们的学位和希尔伯特多项式,我们纠正了较早的出版物,并回答了基里洛夫和内丁的1987年问题。
The projective variety of Lie algebra structures on a 4-dimensional vector space has four irreducible components of dimension 11. We compute their prime ideals in the polynomial ring in 24 variables. By listing their degrees and Hilbert polynomials, we correct an earlier publication and we answer a 1987 question by Kirillov and Neretin.