论文标题

与结构指导重采样的3D密集点云的盲质量评估

Blind Quality Assessment of 3D Dense Point Clouds with Structure Guided Resampling

论文作者

Zhou, Wei, Yang, Qi, Jiang, Qiuping, Zhai, Guangtao, Lin, Weisi

论文摘要

3D点云的客观质量评估对于在现实世界应用中的沉浸式多媒体系统的发展至关重要。尽管对2D图像和视频的感知质量评估成功,但对于具有大规模不规则分布的3D点的3D点云仍然很少。因此,在本文中,我们提出了一个带有结构引导重采样(SGR)的客观点云质量指数,以自动评估3D密集点云的感知视觉质量。所提出的SGR是无用任何参考信息的通用盲质量评估方法。具体而言,考虑到人类视觉系统(HVS)对结构信息高度敏感,我们首先利用点云的独特正常向量来执行区域预处理,其中包括按键重新采样和局部区域构建。然后,我们提取三组与质量相关的特征,包括:1)几何密度特征; 2)颜色自然特征; 3)角度一致性特征。人脑的认知特征和自然性的规律性都涉及设计的质量感知特征,这些特征可以捕获扭曲的3D点云的最重要方面。对几个公开可用的主观云质量数据库进行的广泛实验验证了我们提出的SGR可以与最新的全参考,减少引用和无参考质量评估算法竞争。

Objective quality assessment of 3D point clouds is essential for the development of immersive multimedia systems in real-world applications. Despite the success of perceptual quality evaluation for 2D images and videos, blind/no-reference metrics are still scarce for 3D point clouds with large-scale irregularly distributed 3D points. Therefore, in this paper, we propose an objective point cloud quality index with Structure Guided Resampling (SGR) to automatically evaluate the perceptually visual quality of 3D dense point clouds. The proposed SGR is a general-purpose blind quality assessment method without the assistance of any reference information. Specifically, considering that the human visual system (HVS) is highly sensitive to structure information, we first exploit the unique normal vectors of point clouds to execute regional pre-processing which consists of keypoint resampling and local region construction. Then, we extract three groups of quality-related features, including: 1) geometry density features; 2) color naturalness features; 3) angular consistency features. Both the cognitive peculiarities of the human brain and naturalness regularity are involved in the designed quality-aware features that can capture the most vital aspects of distorted 3D point clouds. Extensive experiments on several publicly available subjective point cloud quality databases validate that our proposed SGR can compete with state-of-the-art full-reference, reduced-reference, and no-reference quality assessment algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源