论文标题
通过基于歧视者的监督指导注意模块在多发性硬化症中启用gans的特定病变的预测
Lesion-Specific Prediction with Discriminator-Based Supervised Guided Attention Module Enabled GANs in Multiple Sclerosis
论文作者
论文摘要
多发性硬化症(MS)是一种慢性神经系统疾病,其特征是大脑白质病变的发展。相对于其他MRI模态,T2流体减弱的反转恢复(FLAIR)脑磁共振成像(MRI)提供了MS病变的出色可视化和表征。 MS中的后续大脑特性MRI为临床医生提供了有用的信息,以监测疾病进展。在这项研究中,我们建议对生成对抗网络(GAN)进行新的修改,以预测MS以固定时间间隔的未来病变特异性MRI。我们在歧视者中使用受监督的指导性注意力和扩张的卷积,该歧视者支持对生成的图像是否是基于对病变区域的关注来进行明智的预测,这反过来又有可能帮助改善生成器以更准确地预测未来检查的病变领域。我们将我们的方法与几个基线和一种最先进的CF-Sagan模型进行了比较[1]。总之,我们的结果表明,与其他总体性能相似的模型相比,所提出的方法可实现更高的准确性,并减少病变区域预测误差的标准偏差。
Multiple Sclerosis (MS) is a chronic neurological condition characterized by the development of lesions in the white matter of the brain. T2-fluid attenuated inversion recovery (FLAIR) brain magnetic resonance imaging (MRI) provides superior visualization and characterization of MS lesions, relative to other MRI modalities. Follow-up brain FLAIR MRI in MS provides helpful information for clinicians towards monitoring disease progression. In this study, we propose a novel modification to generative adversarial networks (GANs) to predict future lesion-specific FLAIR MRI for MS at fixed time intervals. We use supervised guided attention and dilated convolutions in the discriminator, which supports making an informed prediction of whether the generated images are real or not based on attention to the lesion area, which in turn has potential to help improve the generator to predict the lesion area of future examinations more accurately. We compared our method to several baselines and one state-of-art CF-SAGAN model [1]. In conclusion, our results indicate that the proposed method achieves higher accuracy and reduces the standard deviation of the prediction errors in the lesion area compared with other models with similar overall performance.