论文标题
基于人工智能的大脑周围微环境的局部区域标记
Artificial intelligence-based locoregional markers of brain peritumoral microenvironment
论文作者
论文摘要
在恶性原发性脑肿瘤中,癌细胞浸润到周围的脑结构中,导致不可避免的复发。对周围区域的浸润性异质性的定量评估,该区域(活检或切除可能是危险的区域)对于临床决策很重要。以前关于表征周围区域浸润性异质性的工作使用了各种成像方式,但是探索了细胞外的无水运动限制的信息。在这里,我们通过使用基于扩散的张量成像(DTI)的自由水量分数图来表征一组独特的人工智能(AI)标记,从而捕获肿瘤浸润的异质性,从而捕获肿瘤的异质性。首先提取了一种新型的基于体素的深度学习周围微环境指数(PMI),它是通过利用胶质母细胞瘤和脑转移的广泛不同的水扩散性特性来提取的。均匀高PMI值的局部枢纽的描述性特征被提取为基于AI的标记,以捕获渗透性异质性的不同方面。提出的标记物应用于两个临床用例,对275个成人型弥漫性神经胶质瘤(4级)独立人群进行分析,分析了异氯酸酯 - 脱水酶1(IDH1)-Wildtypes之间的存活持续时间,以及带有IDH1-杀手的差异。我们的发现提供了一系列标记物作为浸润的替代物,可捕获有关周围微观结构异质性生物学潜在生物学的独特见解,使其成为与生存和分子分层有关的预后生物标志物,并具有潜在的适用性在临床决策中。
In malignant primary brain tumors, cancer cells infiltrate into the peritumoral brain structures which results in inevitable recurrence. Quantitative assessment of infiltrative heterogeneity in the peritumoral region, the area where biopsy or resection can be hazardous, is important for clinical decision making. Previous work on characterizing the infiltrative heterogeneity in the peritumoral region used various imaging modalities, but information of extracellular free water movement restriction has been limitedly explored. Here, we derive a unique set of Artificial Intelligence (AI)-based markers capturing the heterogeneity of tumor infiltration, by characterizing free water movement restriction in the peritumoral region using Diffusion Tensor Imaging (DTI)-based free water volume fraction maps. A novel voxel-wise deep learning-based peritumoral microenvironment index (PMI) is first extracted by leveraging the widely different water diffusivity properties of glioblastomas and brain metastases as regions with and without infiltrations in the peritumoral tissue. Descriptive characteristics of locoregional hubs of uniformly high PMI values are extracted as AI-based markers to capture distinct aspects of infiltrative heterogeneity. The proposed markers are applied to two clinical use cases on an independent population of 275 adult-type diffuse gliomas (CNS WHO grade 4), analyzing the duration of survival among Isocitrate-Dehydrogenase 1 (IDH1)-wildtypes and the differences with IDH1-mutants. Our findings provide a panel of markers as surrogates of infiltration that captures unique insight about underlying biology of peritumoral microstructural heterogeneity, establishing them as biomarkers of prognosis pertaining to survival and molecular stratification, with potential applicability in clinical decision making.