论文标题

通过操作员的几何方式,在rényi纠缠熵之间进行插值

Interpolating between Rényi entanglement entropies for arbitrary bipartitions via operator geometric means

论文作者

Bugár, Dávid, Vrana, Péter

论文摘要

张量的渐近限制问题可以简化为找到归一化的所有参数,在限制下单调,在直接总和下的添加剂和张量产品下的乘法,其中最简单的是平坦的等级。在复数上,源自量子纠缠理论的这个问题的完善是找到纠缠转换的最佳速率,这是误差指数的函数。这种权衡也可以根据适当含义的单调的一组归一化,加性,乘法功能来表征,其中也包括限制单调。例如,扁平化等级概括为[0,1] $中$α\的(指数)rényi纠缠熵。这种类型的更复杂的参数是已知的,它们在特殊两部分的扁平等级或rényi熵之间插值,其中之一是单个张量因子。 我们介绍了一个新结构的亚粘附和鞋类单调的结构,该构造是根据张量代表的纯状态的许多副本与合适的正算子序列之间的许多副本之间的差异。我们为与基于扁平的功能相对应的操作员的明确家族,并表明可以使用加权操作员的几何方法以非平凡的方式组合它们。这导致了先前已知的添加剂和乘法单调的新表征,并提供了新的鞋类和亚addize单调的单调,可在所有两部分的rényi熵之间插值。我们表明,对于每个这样的单调,也存在较小的乘法和添加剂。此外,我们在新功能上找到了超脱脂和超级义务的新功能。

The asymptotic restriction problem for tensors can be reduced to finding all parameters that are normalized, monotone under restrictions, additive under direct sums and multiplicative under tensor products, the simplest of which are the flattening ranks. Over the complex numbers, a refinement of this problem, originating in the theory of quantum entanglement, is to find the optimal rate of entanglement transformations as a function of the error exponent. This trade-off can also be characterized in terms of the set of normalized, additive, multiplicative functionals that are monotone in a suitable sense, which includes the restriction-monotones as well. For example, the flattening ranks generalize to the (exponentiated) Rényi entanglement entropies of order $α\in[0,1]$. More complicated parameters of this type are known, which interpolate between the flattening ranks or Rényi entropies for special bipartitions, with one of the parts being a single tensor factor. We introduce a new construction of subadditive and submultiplicative monotones in terms of a regularized Rényi divergence between many copies of the pure state represented by the tensor and a suitable sequence of positive operators. We give explicit families of operators that correspond to the flattening-based functionals, and show that they can be combined in a nontrivial way using weighted operator geometric means. This leads to a new characterization of the previously known additive and multiplicative monotones, and gives new submultiplicative and subadditive monotones that interpolate between the Rényi entropies for all bipartitions. We show that for each such monotone there exist pointwise smaller multiplicative and additive ones as well. In addition, we find lower bounds on the new functionals that are superadditive and supermultiplicative.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源