论文标题
$ \ mathrm {sl} _2(\ mathbb {c})$和$ xy = z^2 $ on $ \ mathrm {sl}上的向量字段的Lie代数的集成发生器
Integrable generators of Lie algebras of vector fields on $\mathrm{SL}_2(\mathbb{C})$ and on $xy = z^2$
论文作者
论文摘要
对于特殊线性组$ \ MATHRM {SL} _2(\ Mathbb {C})$,对于单个Quadratic Danielewski Surface $ x y = Z^2 $,我们明确地给出了一个有限数量的完全多项式矢量字段,这些字段产生了所有polynomial vector vector vector vector vector vector vector vector vector and on s on s on s on s on s on s on s on s on s on s on s on s on s on s on s on s on s on s on ans ons em an an on。此外,我们给出了三个独立的单参数亚组,它们生成一个代数自动形态的亚组,它们在$ x y = z^2 $上无限地运行。
For the special linear group $\mathrm{SL}_2(\mathbb{C})$ and for the singular quadratic Danielewski surface $x y = z^2$ we give explicitly a finite number of complete polynomial vector fields that generate the Lie algebra of all polynomial vector fields on them. Moreover, we give three unipotent one-parameter subgroups that generate a subgroup of algebraic automorphisms acting infinitely transitively on $x y = z^2$.