论文标题

网络嵌入的关联学习

Associative Learning for Network Embedding

论文作者

Liang, Yuchen, Krotov, Dmitry, Zaki, Mohammed J.

论文摘要

网络嵌入任务是将网络中的节点表示为低维矢量,同时结合了拓扑和结构信息。大多数现有方法通过直接或隐式分配接近矩阵来解决此问题。在这项工作中,我们从新的角度介绍了一种网络嵌入方法,该方法利用现代Hopfield Networks(MHN)进行关联学习。我们的网络学习每个节点的内容与该节点的邻居之间的关联。这些关联是MHN中的回忆。鉴于该节点的邻居,网络的复发动力学使得可以恢复蒙版节点。我们提出的方法对不同的下游任务进行评估,例如节点分类和链接预测。与常见的矩阵分解技术和基于深度学习的方法相比,结果表明竞争性能。

The network embedding task is to represent the node in the network as a low-dimensional vector while incorporating the topological and structural information. Most existing approaches solve this problem by factorizing a proximity matrix, either directly or implicitly. In this work, we introduce a network embedding method from a new perspective, which leverages Modern Hopfield Networks (MHN) for associative learning. Our network learns associations between the content of each node and that node's neighbors. These associations serve as memories in the MHN. The recurrent dynamics of the network make it possible to recover the masked node, given that node's neighbors. Our proposed method is evaluated on different downstream tasks such as node classification and linkage prediction. The results show competitive performance compared to the common matrix factorization techniques and deep learning based methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源