论文标题

快速援助大脑:使用为大脑开发的人工智能快速准确的分割工具

FAST-AID Brain: Fast and Accurate Segmentation Tool using Artificial Intelligence Developed for Brain

论文作者

Ghazi, Mostafa Mehdipour, Nielsen, Mads

论文摘要

临床实践中使用的医学图像是异质的,与学术研究中研究的扫描质量不同。在解剖学,伪影或成像参数不寻常或方案不同的极端情况下,预处理会分解。对于这些变化,最需要的方法是最需要的。提出了一种新颖的深度学习方法,以将人脑的快速分割为132个区域。提出的模型使用有效的U-NET型网络,并从不同视图和分层关系的交点上受益,以在端到端训练期间融合正交2D平面和脑标签。部署弱监督的学习是为了利用部分标记的数据来利用整个大脑分割和颅内体积(ICV)的估计。此外,数据增强用于通过在保留数据隐私的同时生成具有较高可变化的模型训练的逼真的脑扫描来扩展磁共振成像(MRI)数据。提出的方法可以应用于脑MRI数据,包括头骨或任何其他工件,而无需预处理图像或性能下降。与最新的一些实验相比,使用不同的Atlases进行了几项使用不同的Atlase的实验,以评估受过训练的模型的分割性能,并且与在不同的内部和层间数据集中的现有方法相比,该模型的分割精度和鲁棒性更高。

Medical images used in clinical practice are heterogeneous and not the same quality as scans studied in academic research. Preprocessing breaks down in extreme cases when anatomy, artifacts, or imaging parameters are unusual or protocols are different. Methods robust to these variations are most needed. A novel deep learning method is proposed for fast and accurate segmentation of the human brain into 132 regions. The proposed model uses an efficient U-Net-like network and benefits from the intersection points of different views and hierarchical relations for the fusion of the orthogonal 2D planes and brain labels during the end-to-end training. Weakly supervised learning is deployed to take the advantage of partially labeled data for the whole brain segmentation and estimation of the intracranial volume (ICV). Moreover, data augmentation is used to expand the magnetic resonance imaging (MRI) data by generating realistic brain scans with high variability for robust training of the model while preserving data privacy. The proposed method can be applied to brain MRI data including skull or any other artifacts without preprocessing the images or a drop in performance. Several experiments using different atlases are conducted to evaluate the segmentation performance of the trained model compared to the state-of-the-art, and the results show higher segmentation accuracy and robustness of the proposed model compared to the existing methods across different intra- and inter-domain datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源