论文标题

用于电力控制的强化学习剂的分布式集合

Distributed Ensembles of Reinforcement Learning Agents for Electricity Control

论文作者

Pochelu, Pierrick, Petiton, Serge G., Conche, Bruno

论文摘要

深度强化学习(或仅仅是“ RL”)在工业和研究应用中广受欢迎。但是,它仍然受到一些关键限制,从而减慢了广泛的采用。它的性能对初始条件和非确定性敏感。为了释放这些挑战,我们提出了一个程序,以建立RL代理的合奏,以有效地建立更好的本地决策,以实现长期累积的回报。首次进行了数百个实验,以比较2个电力控制环境中的不同集合构造程序。我们发现,由4个代理商组成的合奏提高了46%的累积奖励,将可重复性提高了3.6,并且可以自然有效地训练并在GPU和CPU上并行训练和预测。

Deep Reinforcement Learning (or just "RL") is gaining popularity for industrial and research applications. However, it still suffers from some key limits slowing down its widespread adoption. Its performance is sensitive to initial conditions and non-determinism. To unlock those challenges, we propose a procedure for building ensembles of RL agents to efficiently build better local decisions toward long-term cumulated rewards. For the first time, hundreds of experiments have been done to compare different ensemble constructions procedures in 2 electricity control environments. We discovered an ensemble of 4 agents improves accumulated rewards by 46%, improves reproducibility by a factor of 3.6, and can naturally and efficiently train and predict in parallel on GPUs and CPUs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源