论文标题

分子结构的特征有益于光泵

Features of Molecular Structure Beneficial for Optical Pumping

论文作者

Dragan, James B., Antonov, Ivan O., Odom, Brian C.

论文摘要

分子的快速有效状态制备可以通过光泵来完成。最明显促进循环的分子结构涉及强烈的电子过渡,具有良好的振动分支(对角线弗兰克 - 康登因子,又称FCFS),并且没有任何介入的电子状态。在这里,根据我们的经验,我们建议对这些条件进行重要调整,以光学泵送Sio $^+$。具体而言,不应修改对任何干预电子状态的偏好,并且过度依赖FCF会错过重要特征。实际上,通过为人口提供奇偶校验翻转的途径,实际上发现Sio $^+$中的中间电子状态在地面旋转状态制备中有益。这一贡献表明,通过中间状态衰减可能有助于状态制备非基因分子或多原子分子的可能性。我们还扩展了有利分支的定义。在Sio $^+$中,我们发现非对角线FCF无法反映振动加热与冷却率。由于分支速率是由过渡偶极矩(TDM)确定的,因此我们引入了一个简单的模型,以近似于diagonal衰变的TDM。我们发现,两个术语主要由偶极矩函数($ d-μ/dx $)的斜率设置,并抵消了平衡键长($ΔX= r_e^g-r_e^e $),可以添加(减去)以增加(减少)给定TDM的幅度。将模型应用于Sio $^+$,我们发现有一个偶然的取消,在这种取消中会减少导致振动激发的衰减,从而导致光学循环自然导致振动冷却。

Fast and efficient state preparation of molecules can be accomplished by optical pumping. Molecular structure that most obviously facilitates cycling involves a strong electronic transition, with favorable vibrational branching (diagonal Franck-Condon factors, aka FCFs) and without any intervening electronic states. Here, we propose important adjustments to those criteria, based on our experience optically pumping SiO$^+$. Specifically, the preference for no intervening electronic states should be revised, and over-reliance on FCFs can miss important features. The intervening electronic state in SiO$^+$is actually found to be beneficial in ground rotational state preparation, by providing a pathway for population to undergo a parity flip. This contribution demonstrates the possibility that decay through intervening states may help state preparation of non-diagonal or polyatomic molecules. We also expand upon the definition of favorable branching. In SiO$^+$, we find that the off-diagonal FCFs fail to reflect the vibrational heating versus cooling rates. Since the branching rates are determined by transition dipole moments (TDMs) we introduce a simple model to approximate the TDMs for off-diagonal decays. We find that two terms, set primarily by the slope of the dipole moment function ($dμ/dx$) and offset in equilibrium bond lengths ($Δx = r_e^g-r_e^e$), can add (subtract) to increase (decrease) the magnitude of a given TDM. Applying the model to SiO$^+$, we find there is a fortuitous cancellation, where decay leading to vibrational excitation is reduced, causing optical cycling to lead naturally to vibrational cooling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源