论文标题

集合避免在$(\ mathbb {f} _q^n)^k $的全级三点模式中

Sets Avoiding Full-Rank Three-Point Patterns in $(\mathbb{F}_q^n)^k$ Are Exponentially Small

论文作者

Omar, Mohamed

论文摘要

我们证明,如果$(\ Mathbb {f} _q^n)^k $的子集($ q $ a od prime功率)避免了完整的三分式图案$ \ vec {x},\ vec {x}}+m_1+m_1 \ m_1 \ m_1 \ vec {d}最多$ 3 \ cdot c_q^{nk} $其中$ 0.8414 q \ leq c_q \ leq 0.9184 q $。这概括了科沃克的定理,并补充了伯格,萨希,索赫尼和潮汐的结果。结果,我们证明,如果$ 3 $是$ \ mathbb {f} _q $中的一个平方,则$(\ mathbb {f} _q^n)^2 $避免平衡三角形的子集很小。

We prove that if a subset of $(\mathbb{F}_q^n)^k$ (with $q$ an odd prime power) avoids a full-rank three-point pattern $\vec{x},\vec{x}+M_1\vec{d},\vec{x}+M_2\vec{d}$ then it is exponentially small, having size at most $3 \cdot c_q^{nk}$ where $0.8414 q \leq c_q \leq 0.9184 q$. This generalizes a theorem of Kovauc and complements results of Berger, Sah, Sawhney and Tidor. As a consequence, we prove that if $3$ is a square in $\mathbb{F}_q$ then subsets of $(\mathbb{F}_q^n)^2$ avoiding equilateral triangles are exponentially small.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源