论文标题

增加夜间场景以可学习的频率解析

Boosting Night-time Scene Parsing with Learnable Frequency

论文作者

Xie, Zhifeng, Wang, Sen, Xu, Ke, Zhang, Zhizhong, Tan, Xin, Xie, Yuan, Ma, Lizhuang

论文摘要

夜间场景解析(NTSP)对于许多视觉应用至关重要,尤其是对于自动驾驶。大多数现有方法都是为了解析白天的现有方法。他们依靠在照明下建模基于像素强度的空间上下文提示。因此,这些方法在夜间场景中表现不佳,因为这种空间上下文提示被埋葬在夜间场景中的过度/暴露区域。在本文中,我们首先进行了基于图像频率的统计实验来解释白天和夜间场景差异。我们发现,在白天和夜间场景之间,图像频率分布差异很大,并且了解此类频率分布对于NTSP问题至关重要。基于此,我们建议利用图像频率分布来解析夜间场景。首先,我们提出了一个可学习的频率编码器(LFE),以模拟不同频率系数之间的关系,以动态测量所有频率组件。其次,我们提出了一个空间频率融合模块(SFF),该模块融合了空间和频率信息,以指导空间上下文特征的提取。广泛的实验表明,我们的方法对夜总会,夜城+和BDD100K晚数据集的最先进方法表现出色。此外,我们证明我们的方法可以应用于现有的白天场景解析方法,并在夜间场景中提高其性能。

Night-Time Scene Parsing (NTSP) is essential to many vision applications, especially for autonomous driving. Most of the existing methods are proposed for day-time scene parsing. They rely on modeling pixel intensity-based spatial contextual cues under even illumination. Hence, these methods do not perform well in night-time scenes as such spatial contextual cues are buried in the over-/under-exposed regions in night-time scenes. In this paper, we first conduct an image frequency-based statistical experiment to interpret the day-time and night-time scene discrepancies. We find that image frequency distributions differ significantly between day-time and night-time scenes, and understanding such frequency distributions is critical to NTSP problem. Based on this, we propose to exploit the image frequency distributions for night-time scene parsing. First, we propose a Learnable Frequency Encoder (LFE) to model the relationship between different frequency coefficients to measure all frequency components dynamically. Second, we propose a Spatial Frequency Fusion module (SFF) that fuses both spatial and frequency information to guide the extraction of spatial context features. Extensive experiments show that our method performs favorably against the state-of-the-art methods on the NightCity, NightCity+ and BDD100K-night datasets. In addition, we demonstrate that our method can be applied to existing day-time scene parsing methods and boost their performance on night-time scenes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源