论文标题
关于广义的Danielewski和Asanuma品种
On Generalised Danielewski and Asanuma varieties
论文作者
论文摘要
在本文中,我们将dubouloz在更高维度($ \ geqslant 2 $)中的取消问题的结果扩展到了复数领域,并将其延伸到任意特征的领域。然后,我们应用广义结果来描述某些假设下的普遍体式变种的Makar-Limanov和Derksen不变。我们还为某些广义的伴呈伴奏符合多项式环建立了必要且充分的条件。
In this paper we extend a result of Dubouloz on the Cancellation Problem in higher dimensions ($\geqslant 2$) over the field of complex numbers to fields of arbitrary characteristic. We then apply the generalised result to describe the Makar-Limanov and Derksen invariant of generalised Asanuma varieties under certain hypotheses. We also establish a necessary and sufficient condition for certain generalised Asanuma varieties to be isomorphic to polynomial rings.