论文标题
一维Quintic复合物Ginzburg-Landau方程中相互作用的多脉冲的动力学
The dynamics of interacting multi-pulses in the one-dimensional quintic complex Ginzburg-Landau equation
论文作者
论文摘要
我们制定了一种有效的数值方案,可以轻松,准确地计算一个空间维度中Quintic复合物Ginzburg-Landau方程(QCGLE)的弱相互作用的多脉冲溶液的动力学。该方案基于一个全局中心模型还原,其中人们认为QCGLE的溶液是单个脉冲的组成以及剩余的函数,该函数与单个脉冲的线性化操作员的伴随本特征函数正交。这种中心的模型投影克服了其他,较大的正统,数值方案的困难,它产生了一个快速缓慢的系统,该系统描述了单个脉冲的位置和相位的“慢速”普通微分方程,以及剩余功能的“快速”部分偏微分方程。使用小参数$ε= e^{--λ_rd} $,其中$λ_r$是常数,$ d> 0 $是脉冲分离距离,我们仅以一阶和二阶校正项来编写快速慢系统,这是一个比整个系统更有效的配方。这种快速慢系统是使用自适应时间步骤进行数值集成的。在此提供了两种和三脉冲相互作用的结果。对于两个脉冲问题,周期性行为的细胞被无限的杂斜轨道隔开,在扰动下显示出“分裂”,从而产生复杂的螺旋行为。对于三个脉冲相互作用的情况,可以发现一系列动力学,包括混沌脉冲相互作用。尽管显示了QCGLE中脉冲相互作用的结果,但数值方案也可以应用于较宽的抛物线PDE类别。
We formulate an effective numerical scheme that can readily, and accurately, calculate the dynamics of weakly interacting multi-pulse solutions of the quintic complex Ginzburg-Landau equation (QCGLE) in one space dimension. The scheme is based on a global centre-manifold reduction where one considers the solution of the QCGLE as the composition of individual pulses plus a remainder function, which is orthogonal to the adjoint eigenfunctions of the linearised operator about a single pulse. This centre-manifold projection overcomes the difficulties of other, more orthodox, numerical schemes, by yielding a fast-slow system describing 'slow' ordinary differential equations for the locations and phases of the individual pulses, and a 'fast' partial differential equation for the remainder function. With small parameter $ε=e^{-λ_r d}$ where $λ_r$ is a constant and $d>0$ is the pulse separation distance, we write the fast-slow system in terms of first-order and second-order correction terms only, a formulation which is solved more efficiently than the full system. This fast-slow system is integrated numerically using adaptive time-stepping. Results are presented here for two- and three-pulse interactions. For the two-pulse problem, cells of periodic behaviour, separated by an infinite set of heteroclinic orbits, are shown to 'split' under perturbation creating complex spiral behaviour. For the case of three pulse interaction a range of dynamics, including chaotic pulse interaction, are found. While results are presented for pulse interaction in the QCGLE, the numerical scheme can also be applied to a wider class of parabolic PDEs.