论文标题
潜在协变量偏移:解锁多源域适应的部分可识别性
Latent Covariate Shift: Unlocking Partial Identifiability for Multi-Source Domain Adaptation
论文作者
论文摘要
多源域适应性(MSDA)通过利用来自多个源域的标记数据和来自目标域的未标记数据来解决未标记目标域的标签预测函数的挑战。常规的MSDA方法通常依赖于协变量偏移或条件偏移范式,这些范围在跨域中具有一致的标签分布。但是,在标签分布在各个域上确实有所不同的实际情况下,该假设证明了限制,从而降低了其在现实世界中的适用性。例如,来自不同地区的动物由于饮食和遗传学的不同而表现出不同的特征。 在此激励的情况下,我们提出了一种称为潜在协变量转移(LCS)的新型范式,该范式引入了范围内的可变性和适应性明显更大。值得注意的是,它提供了一个理论保证,用于恢复标签变量的潜在原因,我们称之为潜在内容变量。在这个新的范式中,我们通过在范围内引入潜在的噪声以及潜在的内容变量和潜在样式变量来提出一个复杂的因果生成模型,以实现对观测数据的更加细微的渲染。我们证明,由于其多功能但独特的因果结构,可以将潜在内容变量识别为可识别可识别性。我们将理论洞察力锚定为一种新型的MSDA方法,该方法学习以可识别的潜在内容变量为条件的标签分布,从而适应了更多的实质性分布变化。所提出的方法在模拟数据集和现实世界中都展示了出色的性能和功效。
Multi-source domain adaptation (MSDA) addresses the challenge of learning a label prediction function for an unlabeled target domain by leveraging both the labeled data from multiple source domains and the unlabeled data from the target domain. Conventional MSDA approaches often rely on covariate shift or conditional shift paradigms, which assume a consistent label distribution across domains. However, this assumption proves limiting in practical scenarios where label distributions do vary across domains, diminishing its applicability in real-world settings. For example, animals from different regions exhibit diverse characteristics due to varying diets and genetics. Motivated by this, we propose a novel paradigm called latent covariate shift (LCS), which introduces significantly greater variability and adaptability across domains. Notably, it provides a theoretical assurance for recovering the latent cause of the label variable, which we refer to as the latent content variable. Within this new paradigm, we present an intricate causal generative model by introducing latent noises across domains, along with a latent content variable and a latent style variable to achieve more nuanced rendering of observational data. We demonstrate that the latent content variable can be identified up to block identifiability due to its versatile yet distinct causal structure. We anchor our theoretical insights into a novel MSDA method, which learns the label distribution conditioned on the identifiable latent content variable, thereby accommodating more substantial distribution shifts. The proposed approach showcases exceptional performance and efficacy on both simulated and real-world datasets.