论文标题
钻石中浅氮呈中心的电荷稳定性和基于电荷状态的自旋读数
Charge stability and charge-state-based spin readout of shallow nitrogen-vacancy centers in diamond
论文作者
论文摘要
钻石中带负电荷的氮胶(NV)中心的基于自旋的应用需要有效的自旋读数。一种方法是旋转电荷转换(SCC),依赖于将旋转状态映射到中性(NV $^0 $)和负(NV $^ - $)的电荷状态状态,然后是随后的充电读数。在高电荷状态稳定性的情况下,SCC可以启用扩展的测量时间,与常用的荧光检测相比,读数的精度和最小化噪声提高。但是,纳米级传感应用需要在几美元{\ nano \ meter} $距离表面相关效果可能会降低NV电荷状态的表面距离内的浅NV中心。在本文中,我们调查了单个NV中心的电荷状态初始化和稳定性,植入了$ \ si {5} {\ nano \ meter} $下方的平坦钻石板表面下方的电荷初始化和稳定性。我们在四个适合纳米尺度传感的浅NV中心上演示了SCC方案,获得了降低的读数噪声的5--6倍于自旋投射噪声限制。我们研究了SCC对浅NV中心的一般适用性,并观察到NV电荷态稳定性和读数噪声之间的相关性。用甘油涂层钻石可以改善电荷初始化和稳定性。我们的结果揭示了与表面相关的电荷环境对NV电荷特性的影响,并激发了进一步的研究,以用甘油或其他材料功能化钻石表面,以进行电荷状态稳定和有效的浅NV中心的自旋状态读数,适用于适合纳米尺度感应的浅NV中心。
Spin-based applications of the negatively charged nitrogen-vacancy (NV) center in diamonds require efficient spin readout. One approach is the spin-to-charge conversion (SCC), relying on mapping the spin states onto the neutral (NV$^0$) and negative (NV$^-$) charge states followed by a subsequent charge readout. With high charge-state stability, SCC enables extended measurement times, increasing precision and minimizing noise in the readout compared to the commonly used fluorescence detection. Nano-scale sensing applications, however, require shallow NV centers within a few $\si{\nano \meter}$ distance from the surface where surface related effects might degrade the NV charge state. In this article, we investigate the charge state initialization and stability of single NV centers implanted $\approx \SI{5}{\nano \meter}$ below the surface of a flat diamond plate. We demonstrate the SCC protocol on four shallow NV centers suitable for nano-scale sensing, obtaining a reduced readout noise of 5--6 times the spin-projection noise limit. We investigate the general applicability of SCC for shallow NV centers and observe a correlation between NV charge-state stability and readout noise. Coating the diamond with glycerol improves both charge initialization and stability. Our results reveal the influence of the surface-related charge environment on the NV charge properties and motivate further investigations to functionalize the diamond surface with glycerol or other materials for charge-state stabilization and efficient spin-state readout of shallow NV centers suitable for nano-scale sensing.