论文标题

在电容聚类的固定参数障碍上

On the Fixed-Parameter Tractability of Capacitated Clustering

论文作者

Cohen-Addad, Vincent, Li, Jason

论文摘要

我们研究了经典电容的K-Median和K-均值问题的复杂性,该问题由中心数量k进行了参数。众所周知,这些问题是困难的,因为对于高维欧几里得空间而言,最著名的近似值和一般度量空间为$θ(\ log k)$,并且是否存在恒定因子,这仍然是一个主要的开放问题。我们表明,存在电容的K-Median的$(3+ε)$ - 近似算法,在一般度量空间中,运行时间为$ f(ε)n^{o(1)O(a)n^{o(1)} $中的电容k-均值问题的$(9+ε)$ - 近似算法。对于任意维度的欧几里得输入,我们给出了$(1+ε)$ - 近似算法,对于这两个问题,都具有相似的运行时间。这是Adamczyk等人的$(7+ε)$ - 近似的显着改善。对于一般度量空间中的K-Median和Xu等人的$(69+ε)$ - 近似。对于欧几里得K-均值。

We study the complexity of the classic capacitated k-median and k-means problems parameterized by the number of centers, k. These problems are notoriously difficult since the best known approximation bound for high dimensional Euclidean space and general metric space is $Θ(\log k)$ and it remains a major open problem whether a constant factor exists. We show that there exists a $(3+ε)$-approximation algorithm for the capacitated k-median and a $(9+ε)$-approximation algorithm for the capacitated k-means problem in general metric spaces whose running times are $f(ε,k) n^{O(1)}$. For Euclidean inputs of arbitrary dimension, we give a $(1+ε)$-approximation algorithm for both problems with a similar running time. This is a significant improvement over the $(7+ε)$-approximation of Adamczyk et al. for k-median in general metric spaces and the $(69+ε)$-approximation of Xu et al. for Euclidean k-means.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源