论文标题
Shape-Faithful图形图
Shape-Faithful Graph Drawings
论文作者
论文摘要
基于形状的指标,使用D的接近图S表示图形d表示图形g的结构。虽然某些有限的图形类允许接近图(即,最佳形状 - 信仰图纸,其中s = g),但尚未研究用于形状 - 信仰图形的算法。在本文中,我们介绍了第一个用于一般图的形状信仰图纸的研究。首先,我们使用基于形状的指标对流行的图形布局进行了广泛的比较实验,并检查了高度幻想图纸的特性。然后,我们通过引入新的接近力/应力来提出基于力定向和基于应力的算法的形状幻想图算法的SHFR和SHSM。实验表明,SHFR和SHSM比FR(Fruchterman-Reingold)和SM(应力大量化)平均在基于形状的指标上获得了显着改善。
Shape-based metrics measure how faithfully a drawing D represents the structure of a graph G, using the proximity graph S of D. While some limited graph classes admit proximity drawings (i.e., optimally shape-faithful drawings, where S = G), algorithms for shape-faithful drawings of general graphs have not been investigated. In this paper, we present the first study for shape-faithful drawings of general graphs. First, we conduct extensive comparison experiments for popular graph layouts using the shape-based metrics, and examine the properties of highly shape-faithful drawings. Then, we present ShFR and ShSM, algorithms for shape-faithful drawings based on force-directed and stress-based algorithms, by introducing new proximity forces/stress. Experiments show that ShFR and ShSM obtain significant improvement over FR (Fruchterman-Reingold) and SM (Stress Majorization), on average 12% and 35% respectively, on shape-based metrics.