论文标题

分层三元组的经验稳定边界

Empirical Stability Boundary for Hierarchical Triples

论文作者

Tory, Max, Grishin, Evgeni, Mandel, Ilya

论文摘要

三体问题是混乱的,没有封闭形式的分析解决方案。但是,在不确定的时间尺度上,三个或多个物体的分层系统可以稳定。如果可以将物体分为具有不同时间和长度尺度的独立的两体轨道,则该系统被认为是分层的,因此,只有一个轨道仅受其他物体的重力而有轻微的影响。以前的工作已在有限的参数上绘制了这种系统在不同的分辨率下的稳定性,并已尝试得出分析性和半分析稳定性边界拟合以解释观察到的现象。某些制度的理解相对很好。但是,参数空间的大区域保持未映射,并且对此稳定边界的理解很少。我们介绍了在一系列初始参数上层次三元组的稳定性边界的全面数值研究。具体来说,我们考虑内部二进制与外部第三身体的质量比($ q _ {\ rm out} $),相互倾斜度($ i $),内部和外部二进制文件的初始平均异常和偏心($ e _ {$ e _ {\ rm in} $ in} $以及$ e _ _ _ {\ rm rm aft})。我们将稳定边界的依赖性符合$ q _ {\ rm out} $,这是内部二进制二进制半轴轴与外二进制二进制的percentre a _ {\ rm in}/rm _ {\ rm _ { out}} q _ {\ rm out}^{0.32+0.1q _ {\ rm out}} $用于Coplanar Prograde Systems。我们开发了一个额外的因素来解释相互倾向。最终的拟合预测,$ 10^4 $轨道的稳定性随机初始化,靠近稳定性边界,$ 87.7 \%$ $精度。

The three-body problem is famously chaotic, with no closed-form analytical solutions. However, hierarchical systems of three or more bodies can be stable over indefinite timescales. A system is considered hierarchical if the bodies can be divided into separate two-body orbits with distinct time- and length-scales, such that one orbit is only mildly affected by the gravitation of the other bodies. Previous work has mapped the stability of such systems at varying resolutions over a limited range of parameters, and attempts have been made to derive analytic and semi-analytic stability boundary fits to explain the observed phenomena. Certain regimes are understood relatively well. However, there are large regions of the parameter space which remain un-mapped, and for which the stability boundary is poorly understood. We present a comprehensive numerical study of the stability boundary of hierarchical triples over a range of initial parameters. Specifically, we consider the mass ratio of the inner binary to the outer third body ($q_{\rm out}$), mutual inclination ($i$), initial mean anomaly and eccentricity of both the inner and outer binaries ($e_{\rm in}$ and $e_{\rm out}$ respectively). We fit the dependence of the stability boundary on $q_{\rm out}$ as a threshold on the ratio of the inner binary's semi-major axis to the outer binary's pericentre separation $a_{\rm in}/R_{\rm p, out} \leq 10^{-0.6 + 0.04q_{\rm out}}q_{\rm out}^{0.32+0.1q_{\rm out}}$ for coplanar prograde systems. We develop an additional factor to account for mutual inclination. The resulting fit predicts the stability of $10^4$ orbits randomly initialised close to the stability boundary with $87.7\%$ accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源