论文标题

IMCI:整合多视图上下文信息以进行事实提取和验证

IMCI: Integrate Multi-view Contextual Information for Fact Extraction and Verification

论文作者

Wang, Hao, Li, Yangguang, Huang, Zhen, Dou, Yong

论文摘要

随着自动假新闻检测技术的快速发展,事实提取和验证(发烧)吸引了更多的关注。该任务旨在从数百万个开放域Wikipedia文件中提取最相关的事实证据,然后验证相应索赔的可信度。尽管已经为该任务提出了几种强大的模型,并且他们取得了长足的进步,但我们认为他们无法利用多视图上下文信息,因此无法获得更好的性能。在本文中,我们建议整合多视图上下文信息(IMCI)进行事实提取和验证。对于每个证据句子,我们定义两种上下文,即文档内部上下文和文档间上下文}。文档内上下文由文档标题和同一文档中的所有其他句子组成。文档间的上下文包括所有其他证据,这些证据可能来自不同的文档。然后,我们集成了多视图上下文信息,以编码证据句子以处理任务。我们对发烧1.0共享任务的实验结果表明,我们的IMCI框架在事实提取和验证方面取得了长足的进步,并在在线盲目测试集中获得了72.97%的胜利发烧得分,获得了最先进的表现,并获得了75.84%的冠军发烧得分。我们还进行消融研究以检测多视图上下文信息的影响。我们的代码将在https://github.com/phoenixsecularbird/imci上发布。

With the rapid development of automatic fake news detection technology, fact extraction and verification (FEVER) has been attracting more attention. The task aims to extract the most related fact evidences from millions of open-domain Wikipedia documents and then verify the credibility of corresponding claims. Although several strong models have been proposed for the task and they have made great progress, we argue that they fail to utilize multi-view contextual information and thus cannot obtain better performance. In this paper, we propose to integrate multi-view contextual information (IMCI) for fact extraction and verification. For each evidence sentence, we define two kinds of context, i.e. intra-document context and inter-document context}. Intra-document context consists of the document title and all the other sentences from the same document. Inter-document context consists of all other evidences which may come from different documents. Then we integrate the multi-view contextual information to encode the evidence sentences to handle the task. Our experimental results on FEVER 1.0 shared task show that our IMCI framework makes great progress on both fact extraction and verification, and achieves state-of-the-art performance with a winning FEVER score of 72.97% and label accuracy of 75.84% on the online blind test set. We also conduct ablation study to detect the impact of multi-view contextual information. Our codes will be released at https://github.com/phoenixsecularbird/IMCI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源