论文标题

激发表面上的激发和结的激发和结

Instanton homology and knot detection on thickened surfaces

论文作者

Li, Zhenkun, Xie, Yi, Zhang, Boyu

论文摘要

假设$σ$是一个零属的面向面向的表面(可能带有边界),而L是$(-1,1)\timesς$的内部链接。我们证明,当且仅当l是$ \ {0 \} \timesς$的嵌入式结中,且仅当l是同位素的同位素时,l等级为2。结果,APS同源物检测到$(-1,1)\时代$中的UNNENOT。这是广义Khovanov同源性的第一个检测结果,该结果在无限的多种流形家族中有效,它部分解决了Arxiv中的猜想:2005.12863。我们的证明与Instanton同源性获得的先前检测结果不同,因为在这种情况下,Kronheimer-Mrowka的光谱序列的第二页与APS同源性并非同构。我们还表征了产品流形中的所有链接,这些链接具有最小的插入式同源性,这可能具有独立的兴趣。

Suppose $Σ$ is a compact oriented surface (possibly with boundary) that has genus zero, and L is a link in the interior of $(-1,1)\timesΣ$. We prove that the Asaeda-Przytycki-Sikora (APS) homology of L has rank 2 if and only if L is isotopic to an embedded knot in $\{0\}\timesΣ$. As a consequence, the APS homology detects the unknot in $(-1,1)\timesΣ$. This is the first detection result for generalized Khovanov homology that is valid on an infinite family of manifolds, and it partially solves a conjecture in arxiv:2005.12863. Our proof is different from the previous detection results obtained by instanton homology because in this case, the second page of Kronheimer-Mrowka's spectral sequence is not isomorphic to the APS homology. We also characterize all links in product manifolds that have minimal sutured instanton homology, which may be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源