论文标题

与密度估计的金属的PGNAA光谱分类

PGNAA Spectral Classification of Metal with Density Estimations

论文作者

Shayan, Helmand, Krycki, Kai, Doemeland, Marco, Lange-Hegermann, Markus

论文摘要

出于环境,可持续的经济和政治原因,回收过程变得越来越重要,旨在更高的使用二级原材料。目前,对于铜和铝业,没有可用于非均质材料的非破坏性在线分析的方法。及时的伽马中子激活分析(PGNAA)具有克服这一挑战的潜力。由于短期测量,使用PGNAA进行在线分类时的困难来自少量嘈杂的数据。在这种情况下,使用峰值分析使用详细峰的经典评估方法失败。因此,我们建议将光谱数据视为概率分布。然后,我们可以使用最大对数可能相对于内核密度估计进行分类,并使用离散抽样来优化超参数。对于纯铝合金的测量,我们将在0.25秒以下的铝合金几乎完美分类。

For environmental, sustainable economic and political reasons, recycling processes are becoming increasingly important, aiming at a much higher use of secondary raw materials. Currently, for the copper and aluminium industries, no method for the non-destructive online analysis of heterogeneous materials are available. The Prompt Gamma Neutron Activation Analysis (PGNAA) has the potential to overcome this challenge. A difficulty when using PGNAA for online classification arises from the small amount of noisy data, due to short-term measurements. In this case, classical evaluation methods using detailed peak by peak analysis fail. Therefore, we propose to view spectral data as probability distributions. Then, we can classify material using maximum log-likelihood with respect to kernel density estimation and use discrete sampling to optimize hyperparameters. For measurements of pure aluminium alloys we achieve near perfect classification of aluminium alloys under 0.25 second.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源