论文标题
在Rastall Gravity中,非平凡的各向异性紧凑型恒星模型
Non-trivial class of anisotropic compact stellar model in Rastall gravity
论文作者
论文摘要
我们研究了带有静态球形对称性的各向异性恒星的Rastall Gravity,而Rastall理论(RT)中假定的物质几何耦合预计在区分RT与一般相对性(GR)中起着至关重要的作用。实际上,所有获得的结果证实RT不等于GR,但是,对于静态球形对称恒星模型,它产生的各向异性与GR相同。我们在脉冲\ textit {她的x-1}的质量和半径上使用了观察性约束来确定模型参数,以证实模型的物理可行性。我们发现,在RT中的物质几何耦合允许的大小比给定质量的GR少一些。我们通过其他二十个脉冲星的观察结果证实了模型的生存能力。利用强能量条件,我们确定了与buchdahl限制一致的紧凑型$ u_ \ text {max} \ sim 0.603 $的上限,而rastall参数$ε= -0.1 $。对于与核饱和密度的中子核兼容的表面密度,Mass-Radius曲线可允许质量高达$ 3.53 m_ \ odot $。我们注意到,没有假定状态方程式,但是该模型与线性行为非常吻合。根据边界密度,我们将20个脉冲星分为四组。三个组与中子内核兼容,而一组完全与更高的边界密度$ 8 \ times 10^{14} $ g/cm $ $^3 $兼容,这表明这些脉冲星可能具有夸克 - 格鲁恩核。
We investigated Rastall gravity, for an anisotropic star with a static spherical symmetry, whereas the matter-geometry coupling as assumed in Rastall Theory (RT) is expected to play a crucial role in differentiating RT from General Relativity (GR). Indeed, all the obtained results confirm that RT is not equivalent to GR, however, it produces the same amount of anisotropy as GR for static spherically symmetric stellar models. We used the observational constraints on the mass and the radius of the pulsar \textit{Her X-1} to determine the model parameters confirming the physical viability of the model. We found that the matter-geometry coupling in RT allows slightly less size than GR for a given mass. We confirmed the model viability via other twenty pulsars' observations. Utilizing the strong energy condition we determined an upper bound on compactness $U_\text{max}\sim 0.603$, in agreement with the Buchdahl limit, whereas Rastall parameter $ε=-0.1$. For a surface density compatible with a neutron core at nuclear saturation density, the mass-radius curve allows masses up to $3.53 M_\odot$. We note that there is no equation of state is assumed, however, the model fits well with a linear behavior. We split the twenty pulsars into four groups according to the boundary densities. Three groups are compatible with neutron cores while one group fits perfectly with higher boundary density $8\times 10^{14}$ g/cm$^3$ which suggests that those pulsars may have quark-gluon cores.