论文标题

有限的lyapunov波动以及经典和量子订购的扩展率指数的上限

Finite-time Lyapunov fluctuations and the upper bound of classical and quantum out-of-time-ordered expansion rate exponents

论文作者

Reynoso, Miguel A P, Delben, Guilherme J, Schlesinger, Martin, Beims, Marcus W

论文摘要

这封信证明了Chaotic Maps(逻辑,经典和量子标准图(SMS))表明,超时订购的四点相关器(OTOC)的指数增长率($λ$)等于经典的Lyapunov指数($λ$)\ textit {plus} $Δ^^^^^^^^^^^{一步有限的Lyapunov指数(FTLE)。 Jensen的不平等为被考虑的系统提供了上限$λ\leλ$。公平是用$λ=λ+δ^{\ mbox {\ tiny(fluc)}} $恢复的,其中$ k $ -h $ -high-higher-forder-forder-forder-rerger-rerger-rerger-rerger-rerger-forder-forters累积。使用$ k = 20 $ furnish $Δ^{\ mbox {\ tiny(fluc)}} \ sim \ ln {(\ sqrt {2})$使用$Δ^{\ tiny(fluc)}} $ for \ textit {所有maps}(所有maps}(所有smss in smss)。

This Letter demonstrates for chaotic maps (logistic, classical and quantum standard maps (SMs)) that the exponential growth rate ($Λ$) of the out-of-time-ordered four-point correlator (OTOC) is equal to the classical Lyapunov exponent ($λ$) \textit{plus} fluctuations ($Δ^{\mbox{\tiny (fluc)}}$) of the one-step finite-time Lyapunov exponents (FTLEs). Jensen's inequality provides the upper bound $λ\leΛ$ for the considered systems. Equality is restored with $Λ= λ+ Δ^{\mbox{\tiny (fluc)}}$, where $Δ^{\mbox{\tiny (fluc)}}$ is quantified by $k$-higher-order cumulants of the FTLEs. Exact expressions for $Λ$ are derived and numerical results using $k = 20$ furnish $Δ^{\mbox{\tiny (fluc)}} \sim\ln{(\sqrt{2})}$ for \textit{all maps} (large kicking intensities in the SMs).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源