论文标题
基于注意力的基因表达在组织学中的可解释回归
Attention-based Interpretable Regression of Gene Expression in Histology
论文作者
论文摘要
深度学习的可解释性被广泛用于评估医学成像模型的可靠性,并降低患者建议不准确的风险。对于超过人类绩效的模型,例如从显微镜图像中预测RNA结构,可解释的建模可以进一步用于发现高度非平凡的模式,而这些模式原本是人眼无法察觉的。我们表明,可解释性可以揭示癌组织的微观外观与其基因表达分析之间的联系。尽管从组织学图像中对所有基因进行详尽的分析仍然具有挑战性,但我们估计了癌症分子亚型,生存和治疗反应的表达值。我们的方法成功地从图像幻灯片中确定了有意义的信息,突出了高基因表达的热点。我们的方法可以帮助表征基因表达如何塑造组织形态,这可能对病理单位的患者分层有益。该代码可在GitHub上找到。
Interpretability of deep learning is widely used to evaluate the reliability of medical imaging models and reduce the risks of inaccurate patient recommendations. For models exceeding human performance, e.g. predicting RNA structure from microscopy images, interpretable modelling can be further used to uncover highly non-trivial patterns which are otherwise imperceptible to the human eye. We show that interpretability can reveal connections between the microscopic appearance of cancer tissue and its gene expression profiling. While exhaustive profiling of all genes from the histology images is still challenging, we estimate the expression values of a well-known subset of genes that is indicative of cancer molecular subtype, survival, and treatment response in colorectal cancer. Our approach successfully identifies meaningful information from the image slides, highlighting hotspots of high gene expression. Our method can help characterise how gene expression shapes tissue morphology and this may be beneficial for patient stratification in the pathology unit. The code is available on GitHub.