论文标题
在离散元素方法中用于广泛相互作用检测的局部Verlet缓冲区方法
Local Verlet buffer approach for broad-phase interaction detection in Discrete Element Method
论文作者
论文摘要
扩展离散元素方法(XDEM)是一种创新的数值模拟技术,它通过其他特性(例如热力学状态,每个粒子的应力/应变)扩展了称为离散元素方法(DEM)的颗粒材料的动力学。行业用来设置其实验过程的这种DEM模拟是复杂的,并且在计算时间内很重。 在每个时间步骤中,这些模拟都会生成相互作用的粒子列表,并且该阶段是DEM模拟中最昂贵的部分之一。最初在分子动力学(MD)中引入的Verlet缓冲区方法(也用于DEM),可以通过将每个粒子邻域扩展到一定的扩展范围,从而扩大交互列表,从而在许多时间步中保持交互列表。该方法依赖于DEM的时间相干性,该方法可以确保没有粒子从一个时间步骤到另一个时间步骤的不规则移动。在经典方法中,所有粒子的邻域都以相同的值扩展,从而导致在不同流动式共存的模拟中次优性能。此外,与MD不同,没有全面的研究分析影响DEM中Verlet缓冲方法性能的不同参数。 在这项工作中,我们为邻居列表的动态更新提出了一种新方法,该方法取决于粒子个体位移,并根据局部流动机制定义了粒子特异性的扩展范围。根据粒子的位移,在整个仿真中分析了交互列表,从而可以根据流程条件进行灵活的更新。我们通过不同的测试案例评估了Verlet扩展范围对执行时间的影响,并经验分析扩展范围值,从而获得最佳性能。
The Extended Discrete Element Method (XDEM) is an innovative numerical simulation technique that extends the dynamics of granular materials known as Discrete Element Method (DEM) by additional properties such as the thermodynamic state, stress/strain for each particle. Such DEM simulations used by industries to set up their experimental processes are complexes and heavy in computation time. At each time step, those simulations generate a list of interacting particles and this phase is one of the most computationally expensive parts of a DEM simulation. The Verlet buffer method, initially introduced in Molecular Dynamic (MD) (and also used in DEM), allows keeping the interaction list for many time steps by extending each particle neighbourhood by a certain extension range, and thus broadening the interaction list. The method relies on the temporal coherency of DEM, which guarantees that no particles move erratically from one time step to the next. In the classical approach, all the particles have their neighbourhood extended by the same value which leads to suboptimal performances in simulations where different flow regimes coexist. Additionally, and unlike in MD, there is no comprehensive study analysing the different parameters that affect the performance of the Verlet buffer method in DEM. In this work, we propose a new method for the dynamic update of the neighbour list that depends on the particles individual displacement and define a particle-specific extension range based on the local flow regime. The interaction list is analysed throughout the simulation based on the particle's displacement allowing a flexible update according to the flow regime conditions. We evaluate the influence of the Verlet extension range on the execution time through different test cases and analyse empirically the extension range value giving the best performance.