论文标题

早期事件预测的时间标签平滑

Temporal Label Smoothing for Early Event Prediction

论文作者

Yèche, Hugo, Pace, Alizée, Rätsch, Gunnar, Kuznetsova, Rita

论文摘要

可以预测提前以低虚假警报率的事件发生的模型对于接受医学界的决策支持系统至关重要。这个具有挑战性的任务通常被视为简单的二进制分类,忽略了样本之间的时间依赖性,而我们建议利用这种结构。我们首先引入了一个统一动态生存分析和早期事件预测的共同理论框架。在对两个字段的目标分析后,我们提出了时间标签平滑(TLS),这是一种更简单,最佳表现最好的方法,可以随着时间的推移提供预测单调性。通过将目标集中在具有更强预测性信号的区域,TLS可以在两个大规模的基准任务上提高所有基准的性能。在临床上相关的措施中,收益尤其值得注意,例如以低警报率以较低的事件召回。在早期事件预测中,TLS将错过事件的数量减少到先前使用的方法超过两倍。

Models that can predict the occurrence of events ahead of time with low false-alarm rates are critical to the acceptance of decision support systems in the medical community. This challenging task is typically treated as a simple binary classification, ignoring temporal dependencies between samples, whereas we propose to exploit this structure. We first introduce a common theoretical framework unifying dynamic survival analysis and early event prediction. Following an analysis of objectives from both fields, we propose Temporal Label Smoothing (TLS), a simpler, yet best-performing method that preserves prediction monotonicity over time. By focusing the objective on areas with a stronger predictive signal, TLS improves performance over all baselines on two large-scale benchmark tasks. Gains are particularly notable along clinically relevant measures, such as event recall at low false-alarm rates. TLS reduces the number of missed events by up to a factor of two over previously used approaches in early event prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源