论文标题

从进化方程中的动态样本中恢复快速衰减的源术语

Recovery of rapidly decaying source terms from dynamical samples in evolution equations

论文作者

Aldroubi, Akram, Gong, Le, Krishtal, Ilya

论文摘要

我们分析了从$ h(t)= \ sum_ {j} h_jϕ(t-t_j)χ_ {[t_j,\ infty)}(t)$从功能hilbert空间中初始价值问题的解决方案$ u $的时空样本中恢复$ h(t)= \ sum_ {j} h_j = h_j = \ sum_ {j} h_jϕ(t-t_j)的问题的问题的问题。在$ h $的表达式中,$ h_j $属于希尔伯特空间,而$ ϕ $是一个通用的实价函数,指数衰减为$ \ infty $。采样策略的设计考虑了测量和背景源的存在中的噪声。

We analyze the problem of recovering a source term of the form $h(t)=\sum_{j}h_jϕ(t-t_j)χ_{[t_j, \infty)}(t)$ from space-time samples of the solution $u$ of an initial value problem in a Hilbert space of functions. In the expression of $h$, the terms $h_j$ belong to the Hilbert space, while $ϕ$ is a generic real-valued function with exponential decay at $\infty$. The design of the sampling strategy takes into account noise in measurements and the existence of a background source.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源